HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Recommendation Systems
Collaborative Filtering On Movielens 100K
Collaborative Filtering On Movielens 100K
評価指標
Precision
RMSE (u1 Splits)
Recall
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Precision
RMSE (u1 Splits)
Recall
Paper Title
Repository
GHRS
0.771
0.887
0.799
GHRS: Graph-based Hybrid Recommendation System with Application to Movie Recommendation
Self-Supervised Exchangeable Model
-
0.91
-
Deep Models of Interactions Across Sets
IGMC
-
0.905
-
Inductive Matrix Completion Based on Graph Neural Networks
GMC
-
0.996
-
Matrix Completion on Graphs
GLocal-K
-
0.8889
-
GLocal-K: Global and Local Kernels for Recommender Systems
sRGCNN
-
0.929
-
Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
FedGNN
-
-
-
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
GraphRec + Feat
-
0.897
-
Attribute-aware non-linear co-embeddings of graph features
GC-MC
-
0.905
-
Graph Convolutional Matrix Completion
Factorized EAE
-
0.920
-
Deep Models of Interactions Across Sets
GraphRec
-
0.904
-
Attribute-aware non-linear co-embeddings of graph features
GRALS
-
0.945
-
Collaborative Filtering with Graph Information: Consistency and Scalable Methods
FedPerGNN
-
-
-
A federated graph neural network framework for privacy-preserving personalization
GRAEM / KPMF
-
0.9174
-
Scalable Probabilistic Matrix Factorization with Graph-Based Priors
GC-MC
-
0.910
-
Graph Convolutional Matrix Completion
MG-GAT
-
0.890
-
Interpretable Recommender System With Heterogeneous Information: A Geometric Deep Learning Perspective
WMLFF
-
0.928
-
Weighted Multi-Level Feature Factorization for App ads CTR and installation prediction
0 of 17 row(s) selected.
Previous
Next