Command Palette
Search for a command to run...
百科
我们编汇了数百条相关词条,帮助您理解「人工智能」
Search for a command to run...
我们编汇了数百条相关词条,帮助您理解「人工智能」
在人工智能中,向数据集添加标签或标记以对数据进行分类和分类的过程称为数据注解。
在机器学习中,Boosting 是一种集成元算法,主要用于减少监督学习中的偏差和方差,以及将弱学习器转换为强学习器的一系列机器学习算法。
音乐信息检索 (MIR) 是一个跨学科领域,涉及从音乐中提取信息及其分析,旨在研究从音乐中检索信息所需的过程、系统和知识表示。
AI 反馈强化学习 (RLAIF) 是一种混合学习方法,这种方法使学习代理不仅可以根据环境的奖励,还可以根据从其他人工智能系统获得的见解来完善其行为,从而丰富学习过程。
模式识别 (Pattern Recognition) 使用机器学习算法自动识别数据中的模式和规律。这些数据可以是任何内容,从文本、图像到声音或其他可定义的质量。
主动学习 (Active Learning) 是机器学习的一种特殊情况,其中学习算法可以交互式地查询用户(或其他一些信息源),以使用所需的输出来标记新数据点。
预测分析 (Predictive Analytics) 这一过程使用数据分析、机器学习、人工智能和统计模型来寻找可能预测未来行为的模式。
文本情感分析 (Sentiment Analysis) 也称为意见挖掘,是指用自然语言处理、文本挖掘以及计算机语言学等方法来识别和提取原素材中的主观讯息。
倒数排名融合 (RRF) 是一种算法,用于评估多个先前排名结果的搜索分数,以生成统一的结果集。
网格计算将多台计算机上所有未使用的资源都汇集在一起,并用于执行单一任务。组织会使用网格计算来执行大型任务或解决单台计算机难以处理的复杂问题。
反向链接 (Backward Chaining) 是一种推理方法,通常应用于人工智能领域中的专家系统和规则引擎。
前向链接 (Forward Chaining) 是一种推理方法,用于基于已知事实逐步推导出结论。在规则推理系统中,它从已知的起始事实或规则开始,通过匹配规则的条件部分,并根据匹配结果执行相应的操作,逐步推导出新的结论。
人工智能框架 (AI Framework) 代表了人工智能的支柱,提供了开发和部署人工智能模型的基础结构。
自主人工智能 (Autonomous AI) 指的是能够在没有人工干预的情况下执行任务的人工智能系统。
边界框 (Bounding Box) 也称为边界体积或边界区域,是用来描述目标在图像中位置和范围的矩形框。
RAG 是一种利用从外部来源获取的事实来提高生成式 AI 模型的准确性和可靠性的技术,它对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。
在计算机科学中,分布式计算 (Distributed Computing) 是使多台计算机协同工作以解决共同问题的方法。
神经辐射场 (NeRF) 是一种神经网络,可以从部分二维图像集重建复杂的三维场景。
Raspberry Pi 是一个信用卡大小的小型计算机,可与任何输入和输出硬件设备进行操作使用。
混合专家模型 (MoE) 的一个显著优势是它们能够在远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,可以显著扩大模型或数据集的规模。
数据增强是深度学习中常用的技巧之一,包括对数据集进行微小的更改或使用深度学习来生成新的数据点。
自回归模型 (Autoregressive Models) 是一类机器学习 (ML) 模型,它通过对序列中先前的输入进行测量来自动预测序列中的下一个组件。
Transformer 模型是一种采用自注意力机制的深度学习模型,这一机制可以按输入数据各部分重要性的不同而分配不同的权重。该模型主要用于自然语言处理 (NLP) 与计算机视觉 (CV) 领域。
TensorFlow 是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前广泛地被用于研究和生产中,比如 Google 商业产品,如语音识别、 Gmail 、 Google 相册和搜索。