HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification
Node Classification On Squirrel 60 20 20
Node Classification On Squirrel 60 20 20
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
Repository
GCN
44.76 ± 1.39
Semi-Supervised Classification with Graph Convolutional Networks
ACM-SGC-2
40.91 ± 1.39
Revisiting Heterophily For Graph Neural Networks
GraphSAGE
41.26 ± 0.26
Inductive Representation Learning on Large Graphs
ACM-SGC-1
46.4 ± 1.13
Revisiting Heterophily For Graph Neural Networks
GAT
42.72 ± 0.33
Graph Attention Networks
ACM-Snowball-3
55.73 ± 2.39
Revisiting Heterophily For Graph Neural Networks
NFGNN
58.9±0.35
Node-oriented Spectral Filtering for Graph Neural Networks
ACM-Snowball-2
55.97 ± 2.03
Revisiting Heterophily For Graph Neural Networks
HH-GCN
47.19 ± 1.21
Half-Hop: A graph upsampling approach for slowing down message passing
GPRGNN
49.93 ± 0.53
Adaptive Universal Generalized PageRank Graph Neural Network
SGC-2
41.25 ± 1.4
Simplifying Graph Convolutional Networks
ACMII-GCN++
69.98 ± 1.53
Revisiting Heterophily For Graph Neural Networks
Snowball-2
47.88 ± 1.23
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GNNDLD
77.72±0.84
GNNDLD: Graph Neural Network with Directional Label Distribution
-
GCN+JK
53.40 ± 1.90
Revisiting Heterophily For Graph Neural Networks
APPNP
34.77 ± 0.34
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
GAT+JK
52.28 ± 3.61
Revisiting Heterophily For Graph Neural Networks
BernNet
51.35 ± 0.73
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
MLP-2
31.28 ± 0.27
Revisiting Heterophily For Graph Neural Networks
HH-GraphSAGE
45.25 ± 1.52
Half-Hop: A graph upsampling approach for slowing down message passing
0 of 37 row(s) selected.
Previous
Next