HyperAIHyperAI

Node Classification On Squirrel 60 20 20

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
GCN44.76 ± 1.39Semi-Supervised Classification with Graph Convolutional Networks-
ACM-SGC-240.91 ± 1.39Revisiting Heterophily For Graph Neural Networks-
GraphSAGE41.26 ± 0.26Inductive Representation Learning on Large Graphs-
ACM-SGC-146.4 ± 1.13Revisiting Heterophily For Graph Neural Networks-
GAT42.72 ± 0.33Graph Attention Networks-
ACM-Snowball-355.73 ± 2.39Revisiting Heterophily For Graph Neural Networks-
NFGNN58.9±0.35Node-oriented Spectral Filtering for Graph Neural Networks-
ACM-Snowball-255.97 ± 2.03Revisiting Heterophily For Graph Neural Networks-
HH-GCN47.19 ± 1.21Half-Hop: A graph upsampling approach for slowing down message passing-
GPRGNN49.93 ± 0.53Adaptive Universal Generalized PageRank Graph Neural Network-
SGC-241.25 ± 1.4Simplifying Graph Convolutional Networks-
ACMII-GCN++69.98 ± 1.53Revisiting Heterophily For Graph Neural Networks-
Snowball-247.88 ± 1.23Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks-
GNNDLD77.72±0.84 GNNDLD: Graph Neural Network with Directional Label Distribution-
GCN+JK53.40 ± 1.90Revisiting Heterophily For Graph Neural Networks-
APPNP34.77 ± 0.34Predict then Propagate: Graph Neural Networks meet Personalized PageRank-
 GAT+JK52.28 ± 3.61Revisiting Heterophily For Graph Neural Networks-
BernNet51.35 ± 0.73BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation-
MLP-231.28 ± 0.27Revisiting Heterophily For Graph Neural Networks-
HH-GraphSAGE45.25 ± 1.52Half-Hop: A graph upsampling approach for slowing down message passing-
0 of 37 row(s) selected.
Node Classification On Squirrel 60 20 20 | SOTA | HyperAI