HyperAI

Node Classification On Squirrel

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
improving-graph-neural-networks-by-learning75.32±1.82
mixhop-higher-order-graph-convolution43.80 ± 1.48
revisiting-heterophily-for-graph-neural67.4 ± 2.21
sheaf-neural-networks-with-connection45.19±1.57
breaking-the-limit-of-graph-neural-networks48.85 ± 0.78
heterophilic-graph-neural-networks39.78±0.91
ordered-gnn-ordering-message-passing-to-deal62.44±1.96
cn-motifs-perceptive-graph-neural-networks63.60±1.96
universal-deep-gnns-rethinking-residual-
revisiting-heterophily-for-graph-neural67.07 ± 1.65
the-heterophilic-snowflake-hypothesis57.83
generalizing-graph-neural-networks-beyond28.98 ± 1.97
holonets-spectral-convolutions-do-extend-to76.71±1.92
finding-global-homophily-in-graph-neural57.54±1.39
revisiting-heterophily-for-graph-neural40.02 ± 0.96
revisiting-heterophily-for-graph-neural67.06 ± 1.66
breaking-the-entanglement-of-homophily-and45.2±1.3
beyond-homophily-with-graph-echo-state-171.2±1.5
label-wise-message-passing-graph-neural62.6±1.6
heterophilous-distribution-propagation-for62.07 ± 1.57
diffusion-jump-gnns-homophiliation-via73.48±1.59
simple-truncated-svd-based-model-for-node74.17±1.83
cat-a-causally-graph-attention-network-for59.3±1.8
graph-neural-reaction-diffusion-models65.62 ± 2.33
learn-from-heterophily-heterophilous54.78 ± 1.58
simple-and-deep-graph-convolutional-networks-138.47 ± 1.58
signgt-signed-attention-based-graph-
edge-directionality-improves-learning-on75.31±1.92
joint-adaptive-feature-smoothing-and-topology46.31 ± 2.46
generalizing-graph-neural-networks-beyond32.33 ± 1.94
geom-gcn-geometric-graph-convolutional-138.14
revisiting-heterophily-for-graph-neural66.98 ± 1.71
revisiting-heterophily-for-graph-neural55.19 ± 1.49
enhancing-intra-class-information-extraction57.32±1.89
non-local-graph-neural-networks33.7 ± 1.5
improving-graph-neural-networks-with-simple74.10±1.89
make-heterophily-graphs-better-fit-gnn-a72.24±1.52
geom-gcn-geometric-graph-convolutional-133.32
beyond-low-frequency-information-in-graph30.83 ± 0.69
restructuring-graph-for-higher-homophily-via56.3 ± 2.2
neural-sheaf-diffusion-a-topological54.78 ± 1.81
understanding-over-squashing-and-bottlenecks-137.05±0.17
graphrare-reinforcement-learning-enhanced55.90±1.39
large-scale-learning-on-non-homophilous61.81 ± 1.80
refining-latent-homophilic-structures-over60.27±1.2
revisiting-heterophily-for-graph-neural45.00 ± 1.4
self-attention-dual-embedding-for-graphs-with68.20±1.57
transfer-entropy-in-graph-convolutional55.04±1.64
neural-sheaf-diffusion-a-topological53.17 ± 1.31
two-sides-of-the-same-coin-heterophily-and55.17 ± 1.58
revisiting-heterophily-for-graph-neural51.8 ± 1.5
finding-global-homophily-in-graph-neural57.88±1.76–
transitivity-preserving-graph-representation66.96 ±2.49
gcnh-a-simple-method-for-representation-
non-local-graph-neural-networks56.8 ± 2.5
neural-sheaf-diffusion-a-topological56.34 ± 1.32
sign-is-not-a-remedy-multiset-to-multiset63.60 ± 1.7
non-local-graph-neural-networks59.0 ± 1.2
geom-gcn-geometric-graph-convolutional-136.24