Conversational Response Selection On Ubuntu 1
المقاييس
R10@1
R10@2
R10@5
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | R10@1 | R10@2 | R10@5 |
---|---|---|---|
fine-grained-post-training-for-improving | 0.911 | 0.962 | 0.994 |
sequential-attention-based-network-for-noetic | 0.796 | 0.894 | 0.975 |
190501969 | 0.882 | 0.949 | 0.990 |
multi-turn-response-selection-for-chatbots | 0.767 | 0.874 | 0.969 |
global-selector-a-new-benchmark-dataset-and | 0.916 | 0.965 | 0.994 |
response-ranking-with-multi-types-of-deep | 0.821 | 0.911 | 0.981 |
multi-view-response-selection-for-human | 0.662 | 0.801 | 0.951 |
modeling-multi-turn-conversation-with-deep | 0.752 | 0.868 | 0.962 |
contextual-masked-auto-encoder-for-retrieval | 0.918 | 0.964 | 0.993 |
the-ubuntu-dialogue-corpus-a-large-dataset-1 | 0.604 | 0.745 | 0.926 |
do-response-selection-models-really-know-what | 0.875 | 0.942 | 0.988 |
triplenet-triple-attention-network-for-multi | 0.790 | 0.885 | 0.970 |
sampling-matters-an-empirical-study-of | 0.785 | 0.883 | 0.974 |
learning-an-effective-context-response | 0.884 | 0.946 | 0.990 |
multi-hop-selector-network-for-multi-turn | 0.800 | 0.899 | 0.978 |
sequential-matching-network-a-new | 0.726 | 0.822 | 0.960 |
efficient-dynamic-hard-negative-sampling-for | 0.917 | 0.965 | 0.994 |
multi-granularity-representations-of-dialog | 0.753 | - | - |
domain-adaptive-training-bert-for-response | 0.855 | 0.928 | 0.985 |
global-selector-a-new-benchmark-dataset-and | 0.886 | 0.946 | 0.989 |
speaker-aware-bert-for-multi-turn-response | 0.855 | 0.928 | 0.983 |
small-changes-make-big-differences-improving | 0.886 | 0.948 | 0.990 |
interactive-matching-network-for-multi-turn | 0.794 | 0.889 | 0.974 |
improved-deep-learning-baselines-for-ubuntu | 0.630 | 0.780 | 0.944 |
one-time-of-interaction-may-not-be-enough-go | 0.796 | 0.894 | 0.974 |