HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Recommendation Systems
Collaborative Filtering On Movielens 1M
Collaborative Filtering On Movielens 1M
評価指標
RMSE
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
RMSE
Paper Title
Repository
CF-NADE
0.829
A Neural Autoregressive Approach to Collaborative Filtering
NNMF
0.843
Neural Network Matrix Factorization
BERT4Rec
-
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer
BST
0.8401
Behavior Sequence Transformer for E-commerce Recommendation in Alibaba
GC-MC
0.832
Graph Convolutional Matrix Completion
FedGNN
0.848
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
GRU4Rec
-
Session-based Recommendations with Recurrent Neural Networks
SSE-PT
-
SSE-PT: Sequential Recommendation Via Personalized Transformer
Factorized EAE
0.860
Deep Models of Interactions Across Sets
SVAE
-
Sequential Variational Autoencoders for Collaborative Filtering
SASRec
-
Self-Attentive Sequential Recommendation
FedPerGNN
0.839
A federated graph neural network framework for privacy-preserving personalization
Factorization with dictionary learning
0.866
Dictionary Learning for Massive Matrix Factorization
∞-AE
-
Infinite Recommendation Networks: A Data-Centric Approach
SVD-AE
-
SVD-AE: Simple Autoencoders for Collaborative Filtering
U-CFN
0.8574
Hybrid Recommender System based on Autoencoders
LRML
-
Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking
I-AutoRec
0.831
AutoRec: Autoencoders Meet Collaborative Filtering
-
IGMC
0.857
Inductive Matrix Completion Based on Graph Neural Networks
HSTU
-
Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations
0 of 31 row(s) selected.
Previous
Next