HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Recommendation Systems
Collaborative Filtering On Movielens 10M
Collaborative Filtering On Movielens 10M
評価指標
RMSE
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
RMSE
Paper Title
Repository
SGD MF
0.772
On the Difficulty of Evaluating Baselines: A Study on Recommender Systems
Factorization with dictionary learning
0.799
Dictionary Learning for Massive Matrix Factorization
Bayesian timeSVD++
0.7523
On the Difficulty of Evaluating Baselines: A Study on Recommender Systems
Bayesian SVD++
0.7563
On the Difficulty of Evaluating Baselines: A Study on Recommender Systems
U-CFN
0.7954
Hybrid Recommender System based on Autoencoders
U-RBM
0.823
On the Difficulty of Evaluating Baselines: A Study on Recommender Systems
SVD-AE
-
SVD-AE: Simple Autoencoders for Collaborative Filtering
I-CFN
0.7767
Hybrid Recommender System based on Autoencoders
CF-NADE
0.771
A Neural Autoregressive Approach to Collaborative Filtering
Sparse FC
0.769
Kernelized Synaptic Weight Matrices
scaled-CER
-
The complementarity of a diverse range of deep learning features extracted from video content for video recommendation
Bayesian timeSVD++ flipped
0.7485
On the Difficulty of Evaluating Baselines: A Study on Recommender Systems
FedPerGNN
0.793
A federated graph neural network framework for privacy-preserving personalization
FedGNN
0.803
FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation
-
GC-MC
0.777
Graph Convolutional Matrix Completion
MRMA
0.7634
Mixture-Rank Matrix Approximation for Collaborative Filtering
-
I-AutoRec
0.782
AutoRec: Autoencoders Meet Collaborative Filtering
-
0 of 17 row(s) selected.
Previous
Next