HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Node Classification
Node Classification On Cora 48 32 20 Fixed
Node Classification On Cora 48 32 20 Fixed
評価指標
1:1 Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
1:1 Accuracy
Paper Title
Repository
Gen-NSD
87.30 ± 1.15
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
NLGAT
88.5 ± 1.8
Non-Local Graph Neural Networks
ACMII-GCN
88.01 ± 1.08
Revisiting Heterophily For Graph Neural Networks
Geom-GCN
85.35 ± 1.57
Geom-GCN: Geometric Graph Convolutional Networks
ACMII-GCN+
88.19 ± 1.17
Revisiting Heterophily For Graph Neural Networks
GESN
86.04 ± 1.01
Addressing Heterophily in Node Classification with Graph Echo State Networks
ACM-SGC-1
86.9 ± 1.38
Revisiting Heterophily For Graph Neural Networks
GGCN
87.95 ± 1.05
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
GPRGCN
87.95 ± 1.18
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-SGC-2
87.69 ± 1.07
Revisiting Heterophily For Graph Neural Networks
O(d)-NSD
86.90 ± 1.13
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GREAD-BS
-
GREAD: Graph Neural Reaction-Diffusion Networks
ACM-GCN++
88.11 ± 0.96
Revisiting Heterophily For Graph Neural Networks
NLGCN
88.1 ± 1.0
Non-Local Graph Neural Networks
LINKX
84.64 ± 1.13
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
ACMII-GCN++
88.25 ± 0.96
Revisiting Heterophily For Graph Neural Networks
H2GCN
87.87 ± 1.20
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
GloGNN++
88.33 ± 1.09
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GloGNN
88.31 ± 1.13
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
NLMLP
76.9 ± 1.8
Non-Local Graph Neural Networks
0 of 26 row(s) selected.
Previous
Next