HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
グラフ分類
Graph Classification On Nci1
Graph Classification On Nci1
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Paper Title
Repository
SAGPool_g
74.06%
Self-Attention Graph Pooling
-
GIUNet
80.2%
Graph isomorphism UNet
TokenGT
76.740±2.054
Pure Transformers are Powerful Graph Learners
-
SF + RFC
75.2%
A Simple Baseline Algorithm for Graph Classification
-
GIC
84.08%
Gaussian-Induced Convolution for Graphs
-
DDGK
68.1%
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
-
CIN++
85.3%
CIN++: Enhancing Topological Message Passing
-
SAGPool_h
67.45%
Self-Attention Graph Pooling
-
WL-OA
86.1%
On Valid Optimal Assignment Kernels and Applications to Graph Classification
-
FGW wl h=4 sp
86.42%
Optimal Transport for structured data with application on graphs
-
GFN
83.65%
Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification
-
k-GNN
76.2%
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
-
WKPI-kmeans
87.2%
Learning metrics for persistence-based summaries and applications for graph classification
-
CAN
84.5%
Cell Attention Networks
-
ASAP
71.48
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations
-
Fea2Fea-s3
74.9%
Fea2Fea: Exploring Structural Feature Correlations via Graph Neural Networks
-
sGIN
83.85%
Mutual Information Maximization in Graph Neural Networks
-
graph2vec
73.22% ± 1.81%
graph2vec: Learning Distributed Representations of Graphs
-
WWL
85.75%
Wasserstein Weisfeiler-Lehman Graph Kernels
-
DAGCN
81.68%
DAGCN: Dual Attention Graph Convolutional Networks
-
0 of 67 row(s) selected.
Previous
Next
Graph Classification On Nci1 | SOTA | HyperAI超神経