Node Classification On Pubmed 005
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Accuracy |
---|---|
graph-attention-networks | 50.4% |
lanczosnet-multi-scale-deep-graph | 66% |
lanczosnet-multi-scale-deep-graph | 68.8 ± 5.6 |
convolutional-neural-networks-on-graphs-with | 48.2% |
mutual-teaching-for-graph-convolutional | 69.5% |
break-the-ceiling-stronger-multi-scale-deep | 69.45% |
gated-graph-sequence-neural-networks | 63.3% |
convolutional-networks-on-graphs-for-learning | 63.2% |
break-the-ceiling-stronger-multi-scale-deep | 72.57% |
diffusion-convolutional-neural-networks | 66.7% |
break-the-ceiling-stronger-multi-scale-deep | 70.04% |
inductive-representation-learning-on-large | 53.0% |
break-the-ceiling-stronger-multi-scale-deep | 68.99% |
view-consistent-heterogeneous-network-on | 74.3% |