HyperAI

Node Classification On Film 60 20 20 Random

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
Geom-GCN*31.63Geom-GCN: Geometric Graph Convolutional Networks
OptBasisGNN42.39 ± 0.52Graph Neural Networks with Learnable and Optimal Polynomial Bases
FavardGNN43.05 ± 0.53Graph Neural Networks with Learnable and Optimal Polynomial Bases
MLP-238.58 ± 0.25Revisiting Heterophily For Graph Neural Networks
NHGCN43.94 ± 1.14Neighborhood Homophily-Guided Graph Convolutional Network
ACM-GCN+41.79 ± 1.01Revisiting Heterophily For Graph Neural Networks
GCNII40.82 ± 1.79Simple and Deep Graph Convolutional Networks
APPNP38.86 ± 0.24Predict then Propagate: Graph Neural Networks meet Personalized PageRank
BernNet41.79 ± 1.01BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
FAGCN31.59 ± 1.37Beyond Low-frequency Information in Graph Convolutional Networks
ACM-SGC-139.33 ± 1.25Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+41.5 ± 1.54Revisiting Heterophily For Graph Neural Networks
GCN+JK32.72 ± 2.62Revisiting Heterophily For Graph Neural Networks
ACM-GCNII41.37 ± 1.37Revisiting Heterophily For Graph Neural Networks
UGT36.84±0.62Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity
SGC-228.81 ± 1.11Simplifying Graph Convolutional Networks
ACMII-Snowball-340.31 ± 1.6Revisiting Heterophily For Graph Neural Networks
Snowball-336.00 ± 1.36Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GCN35.51 ± 0.99Semi-Supervised Classification with Graph Convolutional Networks
ACM-Snowball-241.4 ± 1.23Revisiting Heterophily For Graph Neural Networks
0 of 37 row(s) selected.