HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification
Node Classification On Cora With Public Split
Node Classification On Cora With Public Split
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
CoLinkDistMLP
81.19%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
AdaLanczosNet
80.4 ± 1.1
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
GCN-TV
86.3%
Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous Graph Diffusion Functionals
ChebyNet
78.0%
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
GRAND
85.4 ± 0.4
Graph Random Neural Network for Semi-Supervised Learning on Graphs
GGNN
77.6%
Gated Graph Sequence Neural Networks
GAT
83.0 ± 0.7%
Graph Attention Networks
OGC
86.9%
From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
Snowball (linear)
83.26%
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GEM
83.05%
Graph Entropy Minimization for Semi-supervised Node Classification
CPF-ind-APPNP
85.3%
Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework
G-APPNP
84.31%
Pre-train and Learn: Preserve Global Information for Graph Neural Networks
GAT+PGN
83.26 ± 0.69%
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
LinkDistMLP
80.79%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
DCNN
79.7%
Diffusion-Convolutional Neural Networks
AIR-GCN
84.7%
GraphAIR: Graph Representation Learning with Neighborhood Aggregation and Interaction
SuperGAT MX
84.3%
How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision
-
GCN
85.1 ± 0.7
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
GGCM
83.6%
From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
CoLinkDist
81.39%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
0 of 36 row(s) selected.
Previous
Next