Node Classification On Cora 60 20 20 Random
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | 1:1 Accuracy |
---|---|
joint-adaptive-feature-smoothing-and-topology | 79.51 ± 0.36 |
simple-and-deep-graph-convolutional-networks-1 | 88.98 ± 1.33 |
gnndld-graph-neural-network-with-directional | 92.99 ±0.9 |
geom-gcn-geometric-graph-convolutional-1 | 85.27 |
revisiting-heterophily-for-graph-neural | 89.75 ± 1.16 |
revisiting-heterophily-for-graph-neural | 89.00 ± 1.35 |
revisiting-heterophily-for-graph-neural | 87.64 ± 0.99 |
bernnet-learning-arbitrary-graph-spectral | 88.52 ± 0.95 |
simplifying-graph-convolutional-networks | 85.12 ± 1.64 |
generalizing-graph-neural-networks-beyond | 87.52 ± 0.61 |
revisiting-heterophily-for-graph-neural | 89.33 ± 0.81 |
revisiting-heterophily-for-graph-neural | 76.44 ± 0.30 |
revisiting-heterophily-for-graph-neural | 89.47 ± 1.08 |
revisiting-heterophily-for-graph-neural | 89.36 ± 1.26 |
007-democratically-finding-the-cause-of | 86.90 ± 1.51 |
revisiting-heterophily-for-graph-neural | 89.00 ± 0.72 |
simple-and-deep-graph-convolutional-networks-1 | 88.93 ± 1.37 |
break-the-ceiling-stronger-multi-scale-deep | 88.64 ± 1.15 |
revisiting-heterophily-for-graph-neural | 86.63 ± 1.13 |
break-the-ceiling-stronger-multi-scale-deep | 89.33 ± 1.3 |
revisiting-heterophily-for-graph-neural | 89.59 ± 1.58 |
simplifying-graph-convolutional-networks | 85.48 ± 1.48 |
mixhop-higher-order-graph-convolution | 65.65 ± 11.31 |
revisiting-heterophily-for-graph-neural | 89.52 ± 0.43 |
semi-supervised-classification-with-graph | 87.78 ± 0.96 |
revisiting-heterophily-for-graph-neural | 88.83 ± 1.49 |
revisiting-heterophily-for-graph-neural | 89.18 ± 1.11 |
inductive-representation-learning-on-large | 86.58 ± 0.26 |
revisiting-heterophily-for-graph-neural | 88.95 ± 1.04 |
graph-attention-networks | 76.70 ± 0.42 |
revisiting-heterophily-for-graph-neural | 89.1 ± 1.61 |
predict-then-propagate-graph-neural-networks | 79.41 ± 0.38 |
beyond-low-frequency-information-in-graph | 88.85 ± 1.36 |