HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد
Node Classification On Cora 60 20 20 Random
Node Classification On Cora 60 20 20 Random
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
GNNDLD
92.99 ±0.9
GNNDLD: Graph Neural Network with Directional Label Distribution
ACM-GCN+
89.75 ± 1.16
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
89.59 ± 1.58
Revisiting Heterophily For Graph Neural Networks
GAT+JK
89.52 ± 0.43
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
89.47 ± 1.08
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
89.36 ± 1.26
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
89.33 ± 0.81
Revisiting Heterophily For Graph Neural Networks
Snowball-3
89.33 ± 1.3
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
ACMII-GCN+
89.18 ± 1.11
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
89.1 ± 1.61
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
89.00 ± 1.35
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
89.00 ± 0.72
Revisiting Heterophily For Graph Neural Networks
GCNII
88.98 ± 1.33
Simple and Deep Graph Convolutional Networks
ACMII-Snowball-2
88.95 ± 1.04
Revisiting Heterophily For Graph Neural Networks
GCNII*
88.93 ± 1.37
Simple and Deep Graph Convolutional Networks
FAGCN
88.85 ± 1.36
Beyond Low-frequency Information in Graph Convolutional Networks
ACM-Snowball-2
88.83 ± 1.49
Revisiting Heterophily For Graph Neural Networks
Snowball-2
88.64 ± 1.15
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
BernNet
88.52 ± 0.95
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GCN
87.78 ± 0.96
Semi-Supervised Classification with Graph Convolutional Networks
0 of 33 row(s) selected.
Previous
Next