HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تحليل المشاعر القائمة على الجوانب
Aspect Based Sentiment Analysis On Semeval
Aspect Based Sentiment Analysis On Semeval
المقاييس
Laptop (Acc)
Mean Acc (Restaurant + Laptop)
Restaurant (Acc)
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Laptop (Acc)
Mean Acc (Restaurant + Laptop)
Restaurant (Acc)
Paper Title
MT-ISA
85.74
89.21
92.68
Multi-Task Learning with LLMs for Implicit Sentiment Analysis: Data-level and Task-level Automatic Weight Learning
RVISA
86.68
89.10
91.52
RVISA: Reasoning and Verification for Implicit Sentiment Analysis
LSA+DeBERTa-V3-Large
86.21
88.27
90.33
LSA: Modeling Aspect Sentiment Coherency via Local Sentiment Aggregation
LCF-ATEPC
82.29
86.24
90.18
A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction
DPL-BERT
81.96
85.75
89.54
Towards Unifying the Label Space for Aspect- and Sentence-based Sentiment Analysis
ABSA-DeBERTa
82,76
86,11
89,46
Aspect-based Sentiment Analysis using BERT with Disentangled Attention
BERT-ADA
80.23
84.06
87.89
Adapt or Get Left Behind: Domain Adaptation through BERT Language Model Finetuning for Aspect-Target Sentiment Classification
MaskedABSA
86.24
86.95
87.65
Masking The Bias : From Echo Chambers to Large Scale Aspect-Based Sentiment Analysis
RoBERTa+MLP
83.78
85.58
87.37
Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa
KaGRMN-DSG
81.87
84.61
87.35
Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated Recurrent Memory Network
YORO
81.82
84.48
87.14
You Only Read Once: Constituency-Oriented Relational Graph Convolutional Network for Multi-Aspect Multi-Sentiment Classification
RGAT+
81.25
83.92
86.59
Investigating Typed Syntactic Dependencies for Targeted Sentiment Classification Using Graph Attention Neural Network
PH-SUM
79.55
82.96
86.37
Improving BERT Performance for Aspect-Based Sentiment Analysis
BERT-IL Finetuned
-
-
86.20
Does BERT Understand Sentiment? Leveraging Comparisons Between Contextual and Non-Contextual Embeddings to Improve Aspect-Based Sentiment Models
BAT
79.35
82.69
86.03
Adversarial Training for Aspect-Based Sentiment Analysis with BERT
BERT-PT
78.07
81.51
84.95
BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis
BERT-SPC
78.99
81.73
84.46
Attentional Encoder Network for Targeted Sentiment Classification
IMN
75.36
79.63
83.89
An Interactive Multi-Task Learning Network for End-to-End Aspect-Based Sentiment Analysis
SDGCN-BERT
81.35
82.46
83.57
Modeling Sentiment Dependencies with Graph Convolutional Networks for Aspect-level Sentiment Classification
AEN-BERT
79.93
81.53
83.12
Attentional Encoder Network for Targeted Sentiment Classification
0 of 48 row(s) selected.
Previous
Next
Aspect Based Sentiment Analysis On Semeval | SOTA | HyperAI