HyperAI超神経

Graph Regression On Zinc

評価指標

MAE

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名MAE
recipe-for-a-general-powerful-scalable-graph0.070 ± 0.002
extending-the-design-space-of-graph-neural-10.059
generalizing-topological-graph-neural0.096
towards-better-graph-representation-learning0.066 ± 0.002
masked-attention-is-all-you-need-for-graphs0.051
self-attention-in-colors-another-take-on0.056
graph-learning-with-1d-convolutions-on-random0.088
a-generalization-of-vit-mlp-mixer-to-graphs0.075 ± 0.001
from-primes-to-paths-enabling-fast-multi0.297
multi-mask-aggregators-for-graph-neural0.156
graph-inductive-biases-in-transformers0.059
an-experimental-study-of-the-transferability0.360
learning-long-range-dependencies-on-graphs0.065 ± 0.001
factorizable-graph-convolutional-networks0.366
substructure-aware-graph-neural-networks0.072±0.002
weisfeiler-and-lehman-go-cellular-cw-networks0.094
principal-neighbourhood-aggregation-for-graph0.142
graph-transformers-without-positional0.077
cin-enhancing-topological-message-passing0.074
topology-informed-graph-transformer0.057
recipe-for-a-general-powerful-scalable-graph0.070 ± 0.004
graph-learning-with-1d-convolutions-on-random0.101
graph-level-representation-learning-with0.434
ckgconv-general-graph-convolution-with0.059
cin-enhancing-topological-message-passing0.091
cin-enhancing-topological-message-passing0.077
weisfeiler-and-lehman-go-cellular-cw-networks0.079