Few Shot Image Classification On Mini 1
評価指標
Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
比較表
モデル名 | Accuracy |
---|---|
transductive-few-shot-learning-with-meta | 78.55% |
prototype-rectification-for-few-shot-learning | 70.31% |
hypershot-few-shot-learning-by-kernel | 53.18% |
task-augmentation-by-rotating-for-meta | 65.95% |
self-supervised-learning-for-few-shot-image | 76.82% |
task-augmentation-by-rotating-for-meta | 65.38% |
few-shot-learning-with-global-class | 53.21 |
negative-margin-matters-understanding-margin | 63.85 |
embedding-propagation-smoother-manifold-for | 77.27% |
probabilistic-model-agnostic-meta-learning | 50.13% |
basetransformers-attention-over-base-data | 70.88% |
モデル 12 | 70.0% |
baby-steps-towards-few-shot-learning-with | 67.2% |
leveraging-the-feature-distribution-in | 82.92% |
diversity-with-cooperation-ensemble-methods | 63.73% |
exploiting-unsupervised-inputs-for-accurate | 76.47% |