Command Palette
Search for a command to run...
少ショット画像分類
Few-Shot Image Classificationは、わずかなラベル付きサンプル(通常6つ未満)を使用して、機械学習モデルを新しい画像の分類に訓練するコンピュータビジョンのタスクです。このタスクの目的は、モデルが限られた監督とデータ量でも新しいカテゴリを迅速に認識し、分類できるようにすることで、データが少ない状況下での汎化能力を向上させることです。この技術は、データの取得が困難または高コストであるような場面で特に実用的な価値を持っています。
Mini-Imagenet 5-way (1-shot)
PEMnE-BMS* (transductive)
Mini-Imagenet 5-way (5-shot)
CAML [Laion-2b]
Tiered ImageNet 5-way (5-shot)
CAML [Laion-2b]
Tiered ImageNet 5-way (1-shot)
PT+MAP
CIFAR-FS 5-way (5-shot)
PT+MAP+SF+SOT (transductive)
CIFAR-FS 5-way (1-shot)
PT+MAP+SF+SOT (transductive)
CUB 200 5-way 1-shot
PT+MAP+SF+BPA (transductive)
CUB 200 5-way 5-shot
PT+MAP+SF+SOT (transductive)
FC100 5-way (1-shot)
R2-D2+Task Aug
FC100 5-way (5-shot)
Meta-Dataset
URT
OMNIGLOT - 1-Shot, 20-way
GCR
OMNIGLOT - 5-Shot, 20-way
MC2+
OMNIGLOT - 1-Shot, 5-way
MC2+
OMNIGLOT - 5-Shot, 5-way
DCN6-E
Mini-ImageNet - 1-Shot Learning
PT+MAP
Mini-Imagenet 10-way (5-shot)
Transductive CNAPS + FETI
Mini-Imagenet 10-way (1-shot)
Transductive CNAPS + FETI
Tiered ImageNet 10-way (5-shot)
Transductive CNAPS + FETI
Meta-Dataset Rank
URT
Tiered ImageNet 10-way (1-shot)
Transductive CNAPS + FETI
Dirichlet Mini-Imagenet (5-way, 1-shot)
alpha-TIM
Dirichlet Mini-Imagenet (5-way, 5-shot)
alpha-TIM
Mini-ImageNet-CUB 5-way (1-shot)
PT+MAP
Dirichlet Tiered-Imagenet (5-way, 5-shot)
alpha-TIM
Dirichlet Tiered-Imagenet (5-way, 1-shot)
Mini-ImageNet-CUB 5-way (5-shot)
PT+MAP
Dirichlet CUB-200 (5-way, 5-shot)
ImageNet - 5-shot
ViT-MoE-15B (Every-2)
ImageNet - 1-shot
ViT-MoE-15B (Every-2)
Dirichlet CUB-200 (5-way, 1-shot)
ImageNet-FS (2-shot, novel)
ImageNet-FS (5-shot, all)
KGTN-ens (ResNet-50, h+g, max)
ImageNet-FS (1-shot, novel)
Bongard-HOI
Human (Amateur)
ImageNet - 10-shot
ViT-MoE-15B (Every-2)
Stanford Cars 5-way (5-shot)
MATANet
Mini-Imagenet 20-way (1-shot)
TIM-GD
Mini-Imagenet 20-way (5-shot)
TIM-GD
Stanford Cars 5-way (1-shot)
MATANet
Stanford Dogs 5-way (5-shot)
ImageNet - 0-Shot
CLIP (ViT B/32)
Mini-Imagenet 5-way (10-shot)
PT+MAP
CUB-200-2011 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
CUB 200 50-way (0-shot)
Prototypical Networks
Stanford Dogs 5-way (1-shot)
MATANet
CUB-200 - 0-Shot Learning
TAFE-Net
Caltech-256 5-way (1-shot)
ImageNet-FS (5-shot, novel)
ORBIT Clutter Video Evaluation
ProtoNetsVideo
ImageNet-FS (10-shot, all)
KGTN (ResNet-50)
SUN - 0-Shot
Synthesised Classifier
ImageNet-FS (10-shot, novel)
ORBIT Clean Video Evaluation
SimpleCNAPs + LITE
Mini-ImageNet to CUB - 5 shot learning
TIM-GD
ImageNet-FS (1-shot, all)
OMNIGLOT-EMNIST 5-way (5-shot)
CIFAR100 5-way (1-shot)
ImageNet (1-shot)
OMNIGLOT-EMNIST 5-way (1-shot)
HyperShot
ImageNet-FS (2-shot, all)
iNaturalist 2018 - 10-shot
CIFAR-FS - 1-Shot Learning
pseudo-shots
mini-ImageNet - 100-Way
GCR
iNaturalist 2018 - 1-shot
OMNIGLOT - 5-Shot, 1000 way
CUB-200-2011 5-way (5-shot)
MATANet
OMNIGLOT - 1-Shot, 423 way
APL
iNaturalist 2018 - 5-shot
Caltech-256 5-way (5-shot)
MergedNet-Concat
AWA2 - 0-Shot
iNaturalist (227-way multi-shot)
LaplacianShot
aPY - 0-Shot
TAFE-Net
OMNIGLOT - 5-Shot, 423 way
APL
Caltech101
PRE
CIFAR-FS - 5-Shot Learning
pseudo-shots
OMNIGLOT - 1-Shot, 1000 way
APL
Fewshot-CIFAR100 - 1-Shot Learning
pseudo-shots
Flowers-102 - 0-Shot
Word CNN-RNN (DS-SJE Embedding)
miniImagenet → CUB (5-way 5-shot)
LaplacianShot
CUB-200-2011 5-way (1-shot)
MATANet
Oxford 102 Flower
RS-FSL
AWA - 0-Shot
Synthesised Classifier
AWA1 - 0-Shot
CUB 200 5-way
EASY 3xResNet12 (transductive)
UT Zappos50K
Fewshot-CIFAR100 - 5-Shot Learning
pseudo-shots
miniImagenet → CUB (5-way 1-shot)
LaplacianShot
FC100 5-way (10-shot)
MTL
CIFAR-100