HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
Emotion Recognition In Conversation
Emotion Recognition In Conversation On 7
Emotion Recognition In Conversation On 7
評価指標
Accuracy
Weighted F1
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy
Weighted F1
Paper Title
Repository
MMGCN
79.75
79.72
MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion Recognition in Conversation
GraphSmile
86.53
86.52
Tracing Intricate Cues in Dialogue: Joint Graph Structure and Sentiment Dynamics for Multimodal Emotion Recognition
MM-DFN
80.91
80.83
MM-DFN: Multimodal Dynamic Fusion Network for Emotion Recognition in Conversations
M3Net
83.67
83.57
Multivariate, Multi-Frequency and Multimodal: Rethinking Graph Neural Networks for Emotion Recognition in Conversation
Joyful
-
85.70
Joyful: Joint Modality Fusion and Graph Contrastive Learning for Multimodal Emotion Recognition
DialogueCRN
81.34
81.28
DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations
SACL-LSTM
80.70
80.74
Supervised Adversarial Contrastive Learning for Emotion Recognition in Conversations
COGMEN
-
84.50
COGMEN: COntextualized GNN based Multimodal Emotion recognitioN
0 of 8 row(s) selected.
Previous
Next