HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Video Salient Object Detection
Video Salient Object Detection On Davis 2016
Video Salient Object Detection On Davis 2016
Metrics
AVERAGE MAE
MAX F-MEASURE
S-Measure
Results
Performance results of various models on this benchmark
Columns
Model Name
AVERAGE MAE
MAX F-MEASURE
S-Measure
Paper Title
Repository
RCRNet+NER
0.028
0.859
0.884
Semi-Supervised Video Salient Object Detection Using Pseudo-Labels
SAGM
0.105
-
0.664
Saliency-Aware Geodesic Video Object Segmentation
-
UFO
0.015
0.906
0.918
A Unified Transformer Framework for Group-based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection
MSTM
0.174
-
0.566
Real-Time Salient Object Detection With a Minimum Spanning Tree
MB+M
0.173
-
0.600
Minimum Barrier Salient Object Detection at 80 FPS
-
TIMP
0.185
-
0.574
Time-Mapping Using Space-Time Saliency
-
MBNM
0.031
0.862
0.887
Unsupervised Video Object Segmentation with Motion-based Bilateral Networks
-
FGRN
0.043
0.783
0.838
Flow Guided Recurrent Neural Encoder for Video Salient Object Detection
-
RealFlow
0.010
0.939
0.945
Transforming Static Images Using Generative Models for Video Salient Object Detection
PDB
0.028
-
0.882
Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection
-
SSAV
0.028
0.861
0.893
Shifting More Attention to Video Salient Object Detection
0 of 11 row(s) selected.
Previous
Next