HyperAIHyperAI

Command Palette

Search for a command to run...

Time-Mapping Using Space-Time Saliency

Sing Bing Kang Feng Zhou Michael F. Cohen

Abstract

We describe a new approach for generating regular-speed, low-frame-rate (LFR) video from a high-frame-rate (HFR) input while preserving the important moments in the original. We call this time-mapping, a time-based analogy to high dynamic range to low dynamic range spatial tone-mapping. Our approach makes these contributions: (1) a robust space-time saliency method for evaluating visual importance, (2) a re-timing technique to temporally resample based on frame importance, and (3) temporal filters to enhance the rendering of salient motion. Results of our space-time saliency method on a benchmark dataset show it is state-of-the-art. In addition, the benefits of our approach to HFR-to-LFR time-mapping over more direct methods are demonstrated in a user study.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp