HyperAIHyperAI

Command Palette

Search for a command to run...

Flow Guided Recurrent Neural Encoder for Video Salient Object Detection

Liang Lin Keze Wang Tianhao Wei Guanbin Li Yuan Xie

Abstract

Image saliency detection has recently witnessed significant progress due to deep convolutional neural networks. However, extending state-of-the-art saliency detectors from image to video is challenging. The performance of salient object detection suffers from object or camera motion and the dramatic change of the appearance contrast in videos. In this paper, we present flow guided recurrent neural encoder(FGRNE), an accurate and end-to-end learning framework for video salient object detection. It works by enhancing the temporal coherence of the per-frame feature by exploiting both motion information in terms of optical flow and sequential feature evolution encoding in terms of LSTM networks. It can be considered as a universal framework to extend any FCN based static saliency detector to video salient object detection. Intensive experimental results verify the effectiveness of each part of FGRNE and confirm that our proposed method significantly outperforms state-of-the-art methods on the public benchmarks of DAVIS and FBMS.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Flow Guided Recurrent Neural Encoder for Video Salient Object Detection | Papers | HyperAI