HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Cora 60 20 20 Random
Node Classification On Cora 60 20 20 Random
Metriken
1:1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
1:1 Accuracy
Paper Title
GNNDLD
92.99 ±0.9
GNNDLD: Graph Neural Network with Directional Label Distribution
ACM-GCN+
89.75 ± 1.16
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-3
89.59 ± 1.58
Revisiting Heterophily For Graph Neural Networks
GAT+JK
89.52 ± 0.43
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
89.47 ± 1.08
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-3
89.36 ± 1.26
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
89.33 ± 0.81
Revisiting Heterophily For Graph Neural Networks
Snowball-3
89.33 ± 1.3
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
ACMII-GCN+
89.18 ± 1.11
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
89.1 ± 1.61
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
89.00 ± 1.35
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
89.00 ± 0.72
Revisiting Heterophily For Graph Neural Networks
GCNII
88.98 ± 1.33
Simple and Deep Graph Convolutional Networks
ACMII-Snowball-2
88.95 ± 1.04
Revisiting Heterophily For Graph Neural Networks
GCNII*
88.93 ± 1.37
Simple and Deep Graph Convolutional Networks
FAGCN
88.85 ± 1.36
Beyond Low-frequency Information in Graph Convolutional Networks
ACM-Snowball-2
88.83 ± 1.49
Revisiting Heterophily For Graph Neural Networks
Snowball-2
88.64 ± 1.15
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
BernNet
88.52 ± 0.95
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GCN
87.78 ± 0.96
Semi-Supervised Classification with Graph Convolutional Networks
0 of 33 row(s) selected.
Previous
Next