HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Cora 48 32 20 Fixed
Node Classification On Cora 48 32 20 Fixed
Metriken
1:1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
1:1 Accuracy
Paper Title
NLGAT
88.5 ± 1.8
Non-Local Graph Neural Networks
GCNII
88.37 ± 1.25
Simple and Deep Graph Convolutional Networks
GloGNN++
88.33 ± 1.09
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GloGNN
88.31 ± 1.13
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
ACMII-GCN++
88.25 ± 0.96
Revisiting Heterophily For Graph Neural Networks
WRGAT
88.20 ± 2.26
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns
ACMII-GCN+
88.19 ± 1.17
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
88.11 ± 0.96
Revisiting Heterophily For Graph Neural Networks
NLGCN
88.1 ± 1.0
Non-Local Graph Neural Networks
FAGCN
88.05 ± 1.57
Beyond Low-frequency Information in Graph Convolutional Networks
ACM-GCN+
88.05 ± 0.99
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN
88.01 ± 1.08
Revisiting Heterophily For Graph Neural Networks
GGCN
87.95 ± 1.05
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
GPRGCN
87.95 ± 1.18
Adaptive Universal Generalized PageRank Graph Neural Network
H2GCN
87.87 ± 1.20
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
ACM-SGC-2
87.69 ± 1.07
Revisiting Heterophily For Graph Neural Networks
MixHop
87.61 ± 0.85
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
Gen-NSD
87.30 ± 1.15
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Diag-NSD
87.14 ± 1.06
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
ACM-SGC-1
86.9 ± 1.38
Revisiting Heterophily For Graph Neural Networks
0 of 26 row(s) selected.
Previous
Next
Node Classification On Cora 48 32 20 Fixed | SOTA | HyperAI