Multivariate Time Series Forecasting On Ushcn
Metriken
MSE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Modellname | MSE | Paper Title | Repository |
---|---|---|---|
BRITS | 0.53 | BRITS: Bidirectional Recurrent Imputation for Time Series | |
T-LSTM | 0.59 | Patient Subtyping via Time-Aware LSTM Networks | - |
NeuralODE-VAE | 0.96 | Neural Ordinary Differential Equations | |
Sequential VAE | 0.83 | Structured Inference Networks for Nonlinear State Space Models | |
NeuralODE-VAE-Mask | 0.83 | Neural Ordinary Differential Equations | |
FLD | 0.258 | Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting | |
GRU-ODE-Bayes | 0.43 | GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series | - |
GraFITi | 0.27 | Forecasting Irregularly Sampled Time Series using Graphs |
0 of 8 row(s) selected.