HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Point Cloud Registration
Point Cloud Registration On Kitti Trained On
Point Cloud Registration On Kitti Trained On
评估指标
Success Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Success Rate
Paper Title
Repository
FCGF+PointDSC
96.76
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
GeoTransformer
67.93
GeoTransformer: Fast and Robust Point Cloud Registration with Geometric Transformer
YOHO-O
81.44
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
GeDi
98.92
Learning general and distinctive 3D local deep descriptors for point cloud registration
FCGF
24.19
Fully Convolutional Geometric Features
YOHO-C
82.16
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
SpinNet
81.44
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
D3Feat-pred
36.76
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
Greedy Grid Search
90.27
Challenging the Universal Representation of Deep Models for 3D Point Cloud Registration
FCGF+SC2-PCR
97.66
SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
-
Exhaustive Grid Search
94.95
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
Predator
41.20
PREDATOR: Registration of 3D Point Clouds with Low Overlap
FPFH+PointDSC
94.05
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
DIP
93.51
Distinctive 3D local deep descriptors
0 of 14 row(s) selected.
Previous
Next