7 天前

针对无特征基线与无偏基准下的3D配准方法泛化性问题研究

{Tomislav, Tomislav; Pribanić, Josep; Petković, Kristijan; Forest, David; Bartol, Bojanić}
摘要

近年来,大多数三维点云配准方法均为基于学习的方法,其主要策略要么是在特征空间中寻找对应关系并进行匹配,要么直接从给定的点云特征中估计配准变换。因此,这类基于特征的方法在面对与训练数据差异较大的点云时,往往难以实现良好泛化。这一问题在当前并不明显,原因在于现有基准测试的定义存在缺陷,无法提供深入的分析能力,且倾向于偏向于数据相似的情况。为此,我们提出一种方法论,可根据任意点云数据集构建更具信息量的三维配准基准,从而对方法性能进行更全面、更具洞察力的评估。基于该方法论,我们构建了一个新型的 FAUST-partial(FP)基准,其基于 FAUST 数据集,并设置了多个难度等级。FP 基准有效弥补了现有基准的若干局限性:数据覆盖不足、参数变化范围有限。该基准使得研究者能够系统评估三维配准方法在单一配准参数变化下的性能表现,从而更清晰地揭示方法的优势与不足。利用新的 FP 基准,我们对当前最先进的配准方法进行了全面分析,结果表明,现有方法在面对严重偏离训练分布的样本外数据时,依然存在显著的泛化困难。针对这一问题,我们提出一种简单但有效的无特征传统三维配准基线方法,其核心思想是基于两个点云之间的加权互相关性进行配准。该方法在当前主流基准数据集上取得了优异性能,超越了大多数基于深度学习的方法。相关源代码已开源,可访问 GitHub:github.com/DavidBoja/exhaustive-grid-search。

针对无特征基线与无偏基准下的3D配准方法泛化性问题研究 | 最新论文 | HyperAI超神经