HyperAI
HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
点云配准
Point Cloud Registration On 3Dmatch At Least 1
Point Cloud Registration On 3Dmatch At Least 1
评估指标
RE (all)
Recall (0.3m, 15 degrees)
TE (all)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
RE (all)
Recall (0.3m, 15 degrees)
TE (all)
Paper Title
Repository
PCAM-Sparse (All post-processing)
8.9
92.4
0.23
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
-
GeoTransformer
-
95
-
Geometric Transformer for Fast and Robust Point Cloud Registration
-
RANSAC-2M
-
66.1
-
Fast Point Feature Histograms (FPFH) for 3D Registration
DCP
-
3.22
-
Deep Closest Point: Learning Representations for Point Cloud Registration
-
ICP (P2Plane)
-
6.59
-
Open3D: A Modern Library for 3D Data Processing
-
Super4PCS
-
21.6
-
Super 4PCS Fast Global Pointcloud Registration via Smart Indexing
Go-ICP
-
22.9
-
Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration
-
PointNetLK
-
1.61
-
PointNetLK: Robust & Efficient Point Cloud Registration using PointNet
-
FGR
-
42.7
-
Fast Global Registration
Exhaustive Grid Search
-
84.11
-
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
ICP (P2Point)
-
6.04
-
Open3D: A Modern Library for 3D Data Processing
-
PCAM-Soft (All post-processing)
9.8
91.3
0.24
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds
-
DGR (RE (all), TE(all) are reported in PCAM)
9.5
91.3
0.25
Deep Global Registration
-
NgeNet
4.932
95.0
0.155
Leveraging Inlier Correspondences Proportion for Point Cloud Registration
-
0 of 14 row(s) selected.
Previous
Next