HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Image To Image Translation
Image To Image Translation On Cityscapes
Image To Image Translation On Cityscapes
评估指标
FID
Per-pixel Accuracy
mIoU
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
FID
Per-pixel Accuracy
mIoU
Paper Title
Repository
SIMS
49.7
75.5%
47.2
Semi-parametric Image Synthesis
USIS-Wavelet
50.14
-
42.32
Wavelet-based Unsupervised Label-to-Image Translation
SPADE
71.8
81.9%
62.3
Semantic Image Synthesis with Spatially-Adaptive Normalization
INADE
-
-
-
Diverse Semantic Image Synthesis via Probability Distribution Modeling
USIS
53.67
-
44.78
USIS: Unsupervised Semantic Image Synthesis
pix2pix
-
71.0
-
Image-to-Image Translation with Conditional Adversarial Networks
CC-FPSE-AUG
52.1
-
63.1
Improving Augmentation and Evaluation Schemes for Semantic Image Synthesis
-
SPADE + SESAME
54.2
82.5%
66
SESAME: Semantic Editing of Scenes by Adding, Manipulating or Erasing Objects
DP-SIMS (ConvNext-L)
38.2
-
76.3
Unlocking Pre-trained Image Backbones for Semantic Image Synthesis
-
pix2pixHD
95
81.4%
58.3
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
OASIS
47.7
-
69.3
You Only Need Adversarial Supervision for Semantic Image Synthesis
BiGAN
-
19%
-
Adversarially Learned Inference
CoGAN
-
40%
-
Coupled Generative Adversarial Networks
CRN
104.7
77.1%
52.4
Photographic Image Synthesis with Cascaded Refinement Networks
-
SB-GAN
60.39
-
-
Semantic Bottleneck Scene Generation
DP-GAN
44.1
-
73.6
Dual Pyramid Generative Adversarial Networks for Semantic Image Synthesis
SimGAN
-
20%
-
Learning from Simulated and Unsupervised Images through Adversarial Training
CC-FPSE
54.3
82.3%
65.5
Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis
Pix2PixHD-AUG
72.7
-
58
Improving Augmentation and Evaluation Schemes for Semantic Image Synthesis
-
SPADE + FFL
59.5
82.5%
64.2
Focal Frequency Loss for Image Reconstruction and Synthesis
-
0 of 21 row(s) selected.
Previous
Next