HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف الصور شبه المُشرف عليه
Semi Supervised Image Classification On Cifar
Semi Supervised Image Classification On Cifar
المقاييس
Percentage error
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Percentage error
Paper Title
Γ-model
20.4
Semi-Supervised Learning with Ladder Networks
GAN
15.59
Improved Techniques for Training GANs
Bad GAN
14.41
Good Semi-supervised Learning that Requires a Bad GAN
Triple-GAN-V2 (CNN-13, no aug)
12.41
Triple Generative Adversarial Networks
Pi Model
12.16
Temporal Ensembling for Semi-Supervised Learning
SESEMI SSL (ConvNet)
11.65
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
VAT
11.36
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
GLOT-DR
10.6
Global-Local Regularization Via Distributional Robustness
VAT+EntMin
10.55
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Triple-GAN-V2 (CNN-13)
10.01
Triple Generative Adversarial Networks
Dual Student (600)
8.89
Dual Student: Breaking the Limits of the Teacher in Semi-supervised Learning
ADA-Net (ConvNet)
8.72
Semi-Supervised Learning by Augmented Distribution Alignment
ICT (WRN-28-2)
7.66
Interpolation Consistency Training for Semi-Supervised Learning
LiDAM
7.48
LiDAM: Semi-Supervised Learning with Localized Domain Adaptation and Iterative Matching
ICT (CNN-13)
7.29
Interpolation Consistency Training for Semi-Supervised Learning
Triple-GAN-V2 (ResNet-26)
6.54
Triple Generative Adversarial Networks
UPS (CNN-13)
6.39±0.02
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
RealMix
6.38
RealMix: Towards Realistic Semi-Supervised Deep Learning Algorithms
Mean Teacher
6.28
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
MixMatch
6.24
MixMatch: A Holistic Approach to Semi-Supervised Learning
0 of 47 row(s) selected.
Previous
Next
Semi Supervised Image Classification On Cifar | SOTA | HyperAI