Collaborative Filtering On Movielens 100K
المقاييس
Precision
RMSE (u1 Splits)
Recall
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | Precision | RMSE (u1 Splits) | Recall |
---|---|---|---|
ghrs-graph-based-hybrid-recommendation-system | 0.771 | 0.887 | 0.799 |
deep-models-of-interactions-across-sets | - | 0.91 | - |
inductive-graph-pattern-learning-for | - | 0.905 | - |
matrix-completion-on-graphs | - | 0.996 | - |
glocal-k-global-and-local-kernels-for | - | 0.8889 | - |
geometric-matrix-completion-with-recurrent | - | 0.929 | - |
fedgnn-federated-graph-neural-network-for | - | - | - |
attribute-aware-non-linear-co-embeddings-of | - | 0.897 | - |
graph-convolutional-matrix-completion | - | 0.905 | - |
deep-models-of-interactions-across-sets | - | 0.920 | - |
attribute-aware-non-linear-co-embeddings-of | - | 0.904 | - |
collaborative-filtering-with-graph | - | 0.945 | - |
a-federated-graph-neural-network-framework | - | - | - |
scalable-probabilistic-matrix-factorization | - | 0.9174 | - |
graph-convolutional-matrix-completion | - | 0.910 | - |
interpretable-recommender-system-with | - | 0.890 | - |
weighted-multi-level-feature-factorization | - | 0.928 | - |