HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification
Node Classification On Wisconsin 60 20 20
Node Classification On Wisconsin 60 20 20
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
Repository
FAGCN
89.75 ± 6.37
Beyond Low-frequency Information in Graph Convolutional Networks
ACM-Snowball-3
96.62 ± 1.86
Revisiting Heterophily For Graph Neural Networks
APPNP
92.00 ± 3.59
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
GCNII*
89.12 ± 3.06
Simple and Deep Graph Convolutional Networks
ACMII-Snowball-3
97.00 ± 2.63
Revisiting Heterophily For Graph Neural Networks
GCN
75.5 ± 2.92
Semi-Supervised Classification with Graph Convolutional Networks
ACM-GCN+
96.5 ± 2.08
Revisiting Heterophily For Graph Neural Networks
Snowball-3
69.5 ± 5.01
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
HH-GCN
79.8 ± 4.30
Half-Hop: A graph upsampling approach for slowing down message passing
Geom-GCN*
64.12
Geom-GCN: Geometric Graph Convolutional Networks
ACM-GCNII*
94.37 ± 2.81
Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-2
96.63 ± 2.24
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII
94.63 ± 2.96
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
96.75 ± 1.79
Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-2
96.38 ± 2.59
Revisiting Heterophily For Graph Neural Networks
SGC-2
74.75 ± 2.89
Simplifying Graph Convolutional Networks
HH-GraphSAGE
85.88 ± 3.99
Half-Hop: A graph upsampling approach for slowing down message passing
HH-GAT
83.53 ± 3.84
Half-Hop: A graph upsampling approach for slowing down message passing
H2GCN
87.5 ± 1.77
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
GraphSAGE
64.85 ± 5.14
Inductive Representation Learning on Large Graphs
0 of 35 row(s) selected.
Previous
Next