HyperAIHyperAI

Node Classification On Texas 60 20 20 Random

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
MLP-292.26 ± 0.71Revisiting Heterophily For Graph Neural Networks-
GCNII*88.52 ± 3.02Simple and Deep Graph Convolutional Networks-
Geom-GCN*67.57Geom-GCN: Geometric Graph Convolutional Networks-
ACMII-GCN95.08 ± 2.07Revisiting Heterophily For Graph Neural Networks-
ACM-SGC-293.44 ± 2.54Revisiting Heterophily For Graph Neural Networks-
APPNP91.18 ± 0.70Predict then Propagate: Graph Neural Networks meet Personalized PageRank-
BernNet93.12 ± 0.65BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation-
ACM-GCNII92.46 ± 1.97Revisiting Heterophily For Graph Neural Networks-
ACM-GCN++96.56 ± 2Revisiting Heterophily For Graph Neural Networks-
NFGNN94.03±0.82Node-oriented Spectral Filtering for Graph Neural Networks-
GCN+JK80.66 ± 1.91Revisiting Heterophily For Graph Neural Networks-
SGC-281.31 ± 3.3Simplifying Graph Convolutional Networks-
GraphSAGE79.03 ± 1.20Inductive Representation Learning on Large Graphs-
GCNII82.46 ± 4.58Simple and Deep Graph Convolutional Networks-
ACM-GCN+94.92 ± 2.79Revisiting Heterophily For Graph Neural Networks-
GPRGNN92.92 ± 0.61Adaptive Universal Generalized PageRank Graph Neural Network-
ACM-SGC-193.61 ± 1.55Revisiting Heterophily For Graph Neural Networks-
ACMII-Snowball-295.25 ± 1.55Revisiting Heterophily For Graph Neural Networks-
HH-GAT80.54 ± 4.80Half-Hop: A graph upsampling approach for slowing down message passing-
 GAT+JK75.41 ± 7.18Revisiting Heterophily For Graph Neural Networks-
0 of 36 row(s) selected.
Node Classification On Texas 60 20 20 Random | SOTA | HyperAI