HyperAI

Node Classification On Texas

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
higher-order-graph-convolutional-network-with92.45±0.73
simple-truncated-svd-based-model-for-node87.57 ± 5.44
the-heterophilic-snowflake-hypothesis93.09
neural-sheaf-diffusion-a-topological85.67 ± 6.95
two-sides-of-the-same-coin-heterophily-and84.86 ± 4.55
mixhop-higher-order-graph-convolution77.84 ± 7.73
revisiting-heterophily-for-graph-neural88.38 ± 3.64
unig-encoder-a-universal-feature-encoder-for85.40±5.3
revisiting-heterophily-for-graph-neural81.89 ± 4.53
self-attention-dual-embedding-for-graphs-with86.49±5.12
geom-gcn-geometric-graph-convolutional-159.73
finding-global-homophily-in-graph-neural84.05±4.90
neural-sheaf-diffusion-a-topological82.97 ± 5.13
heterophilic-graph-neural-networks57.36±0.60
enhancing-intra-class-information-extraction85.84±4.23
sign-is-not-a-remedy-multiset-to-multiset89.19 ± 4.5
deltagnn-graph-neural-network-with74.05±3.08
large-scale-learning-on-non-homophilous74.60 ± 8.37
non-local-graph-neural-networks85.4 ± 3.8
improving-graph-neural-networks-with-simple87.30 ± 5.55
neural-sheaf-diffusion-a-topological85.95 ± 5.51
gcnh-a-simple-method-for-representation87.84±3.87
graph-neural-aggregation-diffusion-with88.3±3.5
learn-from-heterophily-heterophilous86.22 ± 4.67
revisiting-heterophily-for-graph-neural87.84 ± 4.4
cat-a-causally-graph-attention-network-for83.0±2.5
graph-neural-reaction-diffusion-models94.59 ± 5.97
beyond-low-frequency-information-in-graph76.49 ± 2.87
ordered-gnn-ordering-message-passing-to-deal86.22±4.12
diffusion-jump-gnns-homophiliation-via92.43±3.15
transfer-entropy-in-graph-convolutional84.86 ± 4.55
refining-latent-homophilic-structures-over86.32±4.5
improving-graph-neural-networks-by-learning-
understanding-over-squashing-and-bottlenecks-164.46±0.38
bregman-graph-neural-network84.05 ± 5.47
tree-decomposed-graph-neural-network83.00 ± 4.50
sheaf-neural-networks-with-connection86.16±2.24
revisiting-heterophily-for-graph-neural81.89 ± 4.53
revisiting-heterophily-for-graph-neural88.11 ± 3.24
simple-and-deep-graph-convolutional-networks-177.57 ± 3.83
generalizing-graph-neural-networks-beyond83.24 ± 7.07
beyond-homophily-with-graph-echo-state-184.3±4.4
non-local-graph-neural-networks62.6 ± 7.1
revisiting-heterophily-for-graph-neural88.38 ± 3.43
cn-motifs-perceptive-graph-neural-networks85.68±5.28
finding-global-homophily-in-graph-neural84.32±4.15
fdgatii-fast-dynamic-graph-attention-with80.5405
non-local-graph-neural-networks65.5 ± 6.6
make-heterophily-graphs-better-fit-gnn-a84.86±5.01
universal-deep-gnns-rethinking-residual84.60±5.32
revisiting-heterophily-for-graph-neural88.38 ± 3.43
breaking-the-entanglement-of-homophily-and-
geom-gcn-geometric-graph-convolutional-167.57
generalizing-graph-neural-networks-beyond80.00 ± 6.77
breaking-the-limit-of-graph-neural-networks83.62 ± 5.50
geom-gcn-geometric-graph-convolutional-157.58
graphrare-reinforcement-learning-enhanced86.76±5.80
graph-neural-reaction-diffusion-models93.51 ± 5.93
revisiting-heterophily-for-graph-neural86.76 ± 4.75
joint-adaptive-feature-smoothing-and-topology81.35 ± 5.32
transitivity-preserving-graph-representation86.67 ±8.31
unigap-a-universal-and-adaptive-graph86.52 ± 4.8