HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف العقد
Node Classification On Texas
Node Classification On Texas
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
2-HiGCN
92.45±0.73
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
-
HLP Concat
87.57 ± 5.44
Simple Truncated SVD based Model for Node Classification on Heterophilic Graphs
-
MGNN + Hetero-S (8 layers)
93.09
The Heterophilic Snowflake Hypothesis: Training and Empowering GNNs for Heterophilic Graphs
-
Diag-NSD
85.67 ± 6.95
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
-
GGCN
84.86 ± 4.55
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
-
MixHop
77.84 ± 7.73
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
-
ACM-GCN+
88.38 ± 3.64
Revisiting Heterophily For Graph Neural Networks
-
UniG-Encoder
85.40±5.3
UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node Classification
-
ACM-SGC-2
81.89 ± 4.53
Revisiting Heterophily For Graph Neural Networks
-
SADE-GCN
86.49±5.12
Self-attention Dual Embedding for Graphs with Heterophily
-
Geom-GCN-S
59.73
Geom-GCN: Geometric Graph Convolutional Networks
-
GloGNN++
84.05±4.90
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
-
Gen-NSD
82.97 ± 5.13
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
-
LINKX+CausalMP
57.36±0.60
Heterophilic Graph Neural Networks Optimization with Causal Message-passing
-
IIE-GNN
85.84±4.23
Enhancing Intra-class Information Extraction for Heterophilous Graphs: One Neural Architecture Search Approach
-
M2M-GNN
89.19 ± 4.5
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
-
DeltaGNN constant
74.05±3.08
DeltaGNN: Graph Neural Network with Information Flow Control
-
LINKX
74.60 ± 8.37
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
-
NLMLP
85.4 ± 3.8
Non-Local Graph Neural Networks
-
FSGNN
87.30 ± 5.55
Improving Graph Neural Networks with Simple Architecture Design
-
0 of 62 row(s) selected.
Previous
Next
Node Classification On Texas | SOTA | HyperAI