HyperAI

Node Classification On Cornell

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
diffwire-inductive-graph-rewiring-via-the69.04
revisiting-heterophily-for-graph-neural85.68 ± 5.8
graph-neural-reaction-diffusion-models92.72 ± 5.88
neural-sheaf-diffusion-a-topological85.68 ± 6.51
self-attention-dual-embedding-for-graphs-with86.21±5.59
geom-gcn-geometric-graph-convolutional-156.76
heterophilic-graph-neural-networks68.23±2.90
unig-encoder-a-universal-feature-encoder-for86.75±6.56
geom-gcn-geometric-graph-convolutional-155.68
beyond-homophily-structure-aware-path-
finding-global-homophily-in-graph-neural83.51±4.26
generalizing-graph-neural-networks-beyond78.11 ± 6.68
revisiting-heterophily-for-graph-neural82.43 ± 5.44
joint-adaptive-feature-smoothing-and-topology78.11 ± 6.55
deltagnn-graph-neural-network-with75.67±1.91
revisiting-heterophily-for-graph-neural82.43 ± 5.44
revisiting-heterophily-for-graph-neural85.95 ± 5.64
graph-neural-aggregation-diffusion-with83.3±7.0
cn-motifs-perceptive-graph-neural-networks82.38 ± 6.13
revisiting-heterophily-for-graph-neural86.49 ± 6.73
refining-latent-homophilic-structures-over85.96±5.1
fdgatii-fast-dynamic-graph-attention-with82.4324
neural-sheaf-diffusion-a-topological84.86 ± 4.71
ordered-gnn-ordering-message-passing-to-deal87.03±4.73
tree-decomposed-graph-neural-network82.92 ± 6.61 (0, 2-6)
large-scale-learning-on-non-homophilous77.84 ± 5.81
beyond-low-frequency-information-in-graph76.76 ± 5.87
two-sides-of-the-same-coin-heterophily-and85.68 ± 6.63
breaking-the-entanglement-of-homophily-and82.9±3.0
graphrare-reinforcement-learning-enhanced87.84±4.05
finding-global-homophily-in-graph-neural85.95±5.10
the-heterophilic-snowflake-hypothesis68.18
revisiting-heterophily-for-graph-neural85.14 ± 6.07
transitivity-preserving-graph-representation70.0 ±4.44
diffwire-inductive-graph-rewiring-via-the58.02
unigap-a-universal-and-adaptive-graph84.96 ± 5.0
generalizing-graph-neural-networks-beyond79.46 ± 4.80
diffusion-jump-gnns-homophiliation-via87.03±1.62
simple-and-deep-graph-convolutional-networks-177.86 ± 3.79
non-local-graph-neural-networks54.7 ± 7.6
gcnh-a-simple-method-for-representation86.49±6.98
sign-is-not-a-remedy-multiset-to-multiset86.48 ± 6.1
non-local-graph-neural-networks84.9 ± 5.7
improving-graph-neural-networks-with-simple87.84±6.19
cat-a-causally-graph-attention-network-for88.8±2.1
universal-deep-gnns-rethinking-residual84.32±7.29
breaking-the-limit-of-graph-neural-networks81.62 ± 3.90
understanding-over-squashing-and-bottlenecks-1-
learn-from-heterophily-heterophilous80.00 ± 4.26
make-heterophily-graphs-better-fit-gnn-a82.88±5.56
geom-gcn-geometric-graph-convolutional-160.81
neural-sheaf-diffusion-a-topological86.49 ± 7.35
beyond-homophily-with-graph-echo-state-181.1±6.0
sheaf-neural-networks-with-connection85.95±7.72
revisiting-heterophily-for-graph-neural85.68 ± 4.84
transfer-entropy-in-graph-convolutional85.68 ± 6.63
simple-truncated-svd-based-model-for-node84.05±4.67
mixhop-higher-order-graph-convolution73.51 ± 6.34
non-local-graph-neural-networks57.6 ± 5.5
revisiting-heterophily-for-graph-neural85.41 ± 5.3