HyperAI
HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
تصنيف العقد
Node Classification On Cornell
Node Classification On Cornell
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
Repository
CT-Layer
69.04
DiffWire: Inductive Graph Rewiring via the Lovász Bound
-
ACM-GCN++
85.68 ± 5.8
Revisiting Heterophily For Graph Neural Networks
-
RDGNN-I
92.72 ± 5.88
Graph Neural Reaction Diffusion Models
-
Gen-NSD
85.68 ± 6.51
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
-
SADE-GCN
86.21±5.59
Self-attention Dual Embedding for Graphs with Heterophily
-
Geom-GCN-I
56.76
Geom-GCN: Geometric Graph Convolutional Networks
-
GREET+CausalMP
68.23±2.90
Heterophilic Graph Neural Networks Optimization with Causal Message-passing
-
UniG-Encoder
86.75±6.56
UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node Classification
-
Geom-GCN-S
55.68
Geom-GCN: Geometric Graph Convolutional Networks
-
PathNet
-
Beyond Homophily: Structure-aware Path Aggregation Graph Neural Network
GloGNN
83.51±4.26
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
-
H2GCN-1
78.11 ± 6.68
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
-
ACM-SGC-1
82.43 ± 5.44
Revisiting Heterophily For Graph Neural Networks
-
GPRGCN
78.11 ± 6.55
Adaptive Universal Generalized PageRank Graph Neural Network
-
DeltaGNN - control + DC
75.67±1.91
DeltaGNN: Graph Neural Network with Information Flow Control
-
ACM-SGC-2
82.43 ± 5.44
Revisiting Heterophily For Graph Neural Networks
-
ACMII-GCN
85.95 ± 5.64
Revisiting Heterophily For Graph Neural Networks
-
GRADE-GAT
83.3±7.0
Graph Neural Aggregation-diffusion with Metastability
-
CNMPGNN
82.38 ± 6.13
CN-Motifs Perceptive Graph Neural Networks
-
ACMII-GCN++
86.49 ± 6.73
Revisiting Heterophily For Graph Neural Networks
-
0 of 60 row(s) selected.
Previous
Next
Node Classification On Cornell | SOTA | HyperAI