HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد
Node Classification On Cornell
Node Classification On Cornell
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
RDGNN-I
92.72 ± 5.88
Graph Neural Reaction Diffusion Models
CATv3-sup
88.8±2.1
CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
H2GCN-RARE (λ=1.0)
87.84±4.05
GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy
FSGNN (8-hop)
87.84±6.19
Improving Graph Neural Networks with Simple Architecture Design
Ordered GNN
87.03±4.73
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
DJ-GNN
87.03±1.62
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
UniG-Encoder
86.75±6.56
UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node Classification
ACMII-GCN++
86.49 ± 6.73
Revisiting Heterophily For Graph Neural Networks
GCNH
86.49±6.98
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
Diag-NSD
86.49 ± 7.35
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
M2M-GNN
86.48 ± 6.1
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
SADE-GCN
86.21±5.59
Self-attention Dual Embedding for Graphs with Heterophily
LHS
85.96±5.1
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
ACMII-GCN
85.95 ± 5.64
Revisiting Heterophily For Graph Neural Networks
GloGNN++
85.95±5.10
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Conn-NSD
85.95±7.72
Sheaf Neural Networks with Connection Laplacians
ACM-GCN++
85.68 ± 5.8
Revisiting Heterophily For Graph Neural Networks
Gen-NSD
85.68 ± 6.51
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GGCN
85.68 ± 6.63
Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks
ACM-GCN+
85.68 ± 4.84
Revisiting Heterophily For Graph Neural Networks
0 of 60 row(s) selected.
Previous
Next
Node Classification On Cornell | SOTA | HyperAI