HyperAI

Node Classification On Cornell

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
Accuracy
Paper TitleRepository
CT-Layer69.04DiffWire: Inductive Graph Rewiring via the Lovász Bound
ACM-GCN++85.68 ± 5.8Revisiting Heterophily For Graph Neural Networks
RDGNN-I92.72 ± 5.88Graph Neural Reaction Diffusion Models-
Gen-NSD85.68 ± 6.51Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
SADE-GCN86.21±5.59Self-attention Dual Embedding for Graphs with Heterophily-
Geom-GCN-I56.76Geom-GCN: Geometric Graph Convolutional Networks
GREET+CausalMP68.23±2.90Heterophilic Graph Neural Networks Optimization with Causal Message-passing-
UniG-Encoder86.75±6.56UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node Classification
Geom-GCN-S55.68Geom-GCN: Geometric Graph Convolutional Networks
PathNet-Beyond Homophily: Structure-aware Path Aggregation Graph Neural Network
GloGNN83.51±4.26Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
H2GCN-178.11 ± 6.68Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
ACM-SGC-182.43 ± 5.44Revisiting Heterophily For Graph Neural Networks
GPRGCN78.11 ± 6.55Adaptive Universal Generalized PageRank Graph Neural Network
DeltaGNN - control + DC75.67±1.91DeltaGNN: Graph Neural Network with Information Flow Control
ACM-SGC-282.43 ± 5.44Revisiting Heterophily For Graph Neural Networks
ACMII-GCN85.95 ± 5.64Revisiting Heterophily For Graph Neural Networks
GRADE-GAT83.3±7.0Graph Neural Aggregation-diffusion with Metastability-
CNMPGNN82.38 ± 6.13CN-Motifs Perceptive Graph Neural Networks-
ACMII-GCN++86.49 ± 6.73Revisiting Heterophily For Graph Neural Networks
0 of 60 row(s) selected.