HyperAI
HyperAI
الرئيسية
المنصة
الوثائق
الأخبار
الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
شروط الخدمة
سياسة الخصوصية
العربية
HyperAI
HyperAI
Toggle Sidebar
البحث في الموقع...
⌘
K
Command Palette
Search for a command to run...
المنصة
الرئيسية
SOTA
تصنيف العقد
Node Classification On Citeseer With Public
Node Classification On Citeseer With Public
المقاييس
Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
Accuracy
Paper Title
OGC
77.5
From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
GRAND
75.4 ± 0.4
Graph Random Neural Network for Semi-Supervised Learning on Graphs
LDS-GNN
75.0%
Learning Discrete Structures for Graph Neural Networks
Graph-MLP + PGN
74.73 ± 0.6%
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
CPF-tra-APPNP
74.6%
Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework
GraphMix(GCN)
74.52 ± 0.59
GraphMix: Improved Training of GNNs for Semi-Supervised Learning
G3NN
74.5%
A Flexible Generative Framework for Graph-based Semi-supervised Learning
SSP
74.28 ± 0.67%
Optimization of Graph Neural Networks with Natural Gradient Descent
GEM
74.2
Graph Entropy Minimization for Semi-supervised Node Classification
GGCM
74.2
From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
Truncated Krylov
73.86%
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
SSGC
73.6
Simple Spectral Graph Convolution
OKDEEM
73.53
Graph Entropy Minimization for Semi-supervised Node Classification
SEGCN
73.4 ± 0.7
Every Node Counts: Self-Ensembling Graph Convolutional Networks for Semi-Supervised Learning
GCNII
73.4%
Simple and Deep Graph Convolutional Networks
Snowball (tanh)
73.32%
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
DSGCN
73.3
Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks
GCN+GAugO
73.3 ± 1.1
Data Augmentation for Graph Neural Networks
DAGNN (Ours)
73.3 ± 0.6
Towards Deeper Graph Neural Networks
GCN
73.14± 0.67
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
0 of 40 row(s) selected.
Previous
Next
Node Classification On Citeseer With Public | SOTA | HyperAI