Node Classification On Citeseer 60 20 20
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
جدول المقارنة
اسم النموذج | 1:1 Accuracy |
---|---|
break-the-ceiling-stronger-multi-scale-deep | 81.53 ± 1.71 |
inductive-representation-learning-on-large | 78.24 ± 0.30 |
beyond-low-frequency-information-in-graph | 82.37 ± 1.46 |
predict-then-propagate-graph-neural-networks | 68.59 ± 0.30 |
simple-and-deep-graph-convolutional-networks-1 | 81.58 ± 1.3 |
gnndld-graph-neural-network-with-directional | 86.3±1.24 |
revisiting-heterophily-for-graph-neural | 81.32 ± 0.97 |
bernnet-learning-arbitrary-graph-spectral | 80.09 ± 0.79 |
joint-adaptive-feature-smoothing-and-topology | 67.63 ± 0.38 |
revisiting-heterophily-for-graph-neural | 80.96 ± 0.93 |
revisiting-heterophily-for-graph-neural | 81.76 ± 1.25 |
revisiting-heterophily-for-graph-neural | 76.25 ± 0.28 |
revisiting-heterophily-for-graph-neural | 81.69 ± 1.25 |
simplifying-graph-convolutional-networks | 80.75 ± 1.15 |
revisiting-heterophily-for-graph-neural | 82.28 ± 1.12 |
revisiting-heterophily-for-graph-neural | 81.83 ± 1.65 |
beyond-low-frequency-information-in-graph | 79.97 ± 0.69 |
geom-gcn-geometric-graph-convolutional-1 | 77.99 |
revisiting-heterophily-for-graph-neural | 80.93 ± 1.16 |
revisiting-heterophily-for-graph-neural | 81.87 ± 1.38 |
simplifying-graph-convolutional-networks | 79.66 ± 0.75 |
graph-attention-networks | 67.20 ± 0.46 |
mixhop-higher-order-graph-convolution | 49.52 ± 13.35 |
semi-supervised-classification-with-graph | 81.39 ± 1.23 |
revisiting-heterophily-for-graph-neural | 81.79 ± 0.95 |
revisiting-heterophily-for-graph-neural | 82.07 ± 1.04 |
revisiting-heterophily-for-graph-neural | 74.49 ± 2.76 |
simple-and-deep-graph-convolutional-networks-1 | 81.83 ± 1.78 |
break-the-ceiling-stronger-multi-scale-deep | 80.93 ± 1.32 |
revisiting-heterophily-for-graph-neural | 73.77 ± 1.85 |
revisiting-heterophily-for-graph-neural | 81.56 ± 1.15 |
revisiting-heterophily-for-graph-neural | 81.58 ± 1.23 |
revisiting-heterophily-for-graph-neural | 81.65 ± 1.48 |