HyperAI

Node Classification On Citeseer 60 20 20

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
Snowball-281.53 ± 1.71Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GraphSAGE78.24 ± 0.30Inductive Representation Learning on Large Graphs
FAGCN82.37 ± 1.46Beyond Low-frequency Information in Graph Convolutional Networks
APPNP68.59 ± 0.30Predict then Propagate: Graph Neural Networks meet Personalized PageRank
GCNII81.58 ± 1.3Simple and Deep Graph Convolutional Networks
GNNDLD86.3±1.24GNNDLD: Graph Neural Network with Directional Label Distribution-
ACM-Snowball-381.32 ± 0.97Revisiting Heterophily For Graph Neural Networks
BernNet80.09 ± 0.79BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GPRGNN67.63 ± 0.38Adaptive Universal Generalized PageRank Graph Neural Network
ACM-SGC-180.96 ± 0.93Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++81.76 ± 1.25Revisiting Heterophily For Graph Neural Networks
MLP-276.25 ± 0.28Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*81.69 ± 1.25Revisiting Heterophily For Graph Neural Networks
SGC-280.75 ± 1.15Simplifying Graph Convolutional Networks
ACM-GCNII82.28 ± 1.12Revisiting Heterophily For Graph Neural Networks
ACM-GCN++81.83 ± 1.65Revisiting Heterophily For Graph Neural Networks
H2GCN79.97 ± 0.69Beyond Low-frequency Information in Graph Convolutional Networks
Geom-GCN*77.99Geom-GCN: Geometric Graph Convolutional Networks
ACM-SGC-280.93 ± 1.16Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+81.87 ± 1.38Revisiting Heterophily For Graph Neural Networks
0 of 33 row(s) selected.