HyperAI
الرئيسية
الأخبار
أحدث الأوراق البحثية
الدروس
مجموعات البيانات
الموسوعة
SOTA
نماذج LLM
لوحة الأداء GPU
الفعاليات
البحث
حول
العربية
HyperAI
Toggle sidebar
البحث في الموقع...
⌘
K
الرئيسية
SOTA
Node Classification
Node Classification On Citeseer 60 20 20
Node Classification On Citeseer 60 20 20
المقاييس
1:1 Accuracy
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
Columns
اسم النموذج
1:1 Accuracy
Paper Title
Repository
Snowball-2
81.53 ± 1.71
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GraphSAGE
78.24 ± 0.30
Inductive Representation Learning on Large Graphs
FAGCN
82.37 ± 1.46
Beyond Low-frequency Information in Graph Convolutional Networks
APPNP
68.59 ± 0.30
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
GCNII
81.58 ± 1.3
Simple and Deep Graph Convolutional Networks
GNNDLD
86.3±1.24
GNNDLD: Graph Neural Network with Directional Label Distribution
-
ACM-Snowball-3
81.32 ± 0.97
Revisiting Heterophily For Graph Neural Networks
BernNet
80.09 ± 0.79
BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
GPRGNN
67.63 ± 0.38
Adaptive Universal Generalized PageRank Graph Neural Network
ACM-SGC-1
80.96 ± 0.93
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
81.76 ± 1.25
Revisiting Heterophily For Graph Neural Networks
MLP-2
76.25 ± 0.28
Revisiting Heterophily For Graph Neural Networks
ACM-GCNII*
81.69 ± 1.25
Revisiting Heterophily For Graph Neural Networks
SGC-2
80.75 ± 1.15
Simplifying Graph Convolutional Networks
ACM-GCNII
82.28 ± 1.12
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
81.83 ± 1.65
Revisiting Heterophily For Graph Neural Networks
H2GCN
79.97 ± 0.69
Beyond Low-frequency Information in Graph Convolutional Networks
Geom-GCN*
77.99
Geom-GCN: Geometric Graph Convolutional Networks
ACM-SGC-2
80.93 ± 1.16
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
81.87 ± 1.38
Revisiting Heterophily For Graph Neural Networks
0 of 33 row(s) selected.
Previous
Next