HyperAI

Node Classification On Chameleon 60 20 20

المقاييس

1:1 Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

اسم النموذج
1:1 Accuracy
Paper TitleRepository
GAT63.9 ± 0.46Graph Attention Networks
ACM-GCNII*61.66 ± 2.29Revisiting Heterophily For Graph Neural Networks
GCN64.18 ± 2.62Semi-Supervised Classification with Graph Convolutional Networks
ACMII-Snowball-367.53 ± 2.83Revisiting Heterophily For Graph Neural Networks
Geom-GCN*60.9Geom-GCN: Geometric Graph Convolutional Networks
GCN+JK64.68 ± 2.85Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++75.93 ± 1.71Revisiting Heterophily For Graph Neural Networks
ACM-GCNII58.73 ± 2.52Revisiting Heterophily For Graph Neural Networks
ACM-Snowball-268.51 ± 1.7Revisiting Heterophily For Graph Neural Networks
ACMII-Snowball-267.83 ± 2.63Revisiting Heterophily For Graph Neural Networks
GraphSAGE62.15 ± 0.42Inductive Representation Learning on Large Graphs
Snowball-365.49 ± 1.64Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
MLP-246.72 ± 0.46Revisiting Heterophily For Graph Neural Networks
Snowball-264.99 ± 2.39Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
GCNII*62.8 ± 2.87Simple and Deep Graph Convolutional Networks
ACMII-GCN+75.51 ± 1.58Revisiting Heterophily For Graph Neural Networks
MixHop36.28 ± 10.22MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
HH-GraphSAGE62.98 ± 3.35Half-Hop: A graph upsampling approach for slowing down message passing
ACM-Snowball-368.4 ± 2.05Revisiting Heterophily For Graph Neural Networks
ACM-SGC-163.68 ± 1.62Revisiting Heterophily For Graph Neural Networks
0 of 38 row(s) selected.