HyperAI

Node Classification On Chameleon

المقاييس

Accuracy

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجAccuracy
gcnh-a-simple-method-for-representation71.56±1.86
edge-directionality-improves-learning-on79.71±1.26
generalizing-graph-neural-networks-beyond52.96 ± 2.09
simple-and-deep-graph-convolutional-networks-163.86 ± 3.04
generalizing-graph-neural-networks-beyond58.38 ± 1.76
revisiting-heterophily-for-graph-neural69.14 ± 1.91
self-attention-dual-embedding-for-graphs-with75.57±1.57
non-local-graph-neural-networks50.7 ± 2.2
revisiting-heterophily-for-graph-neural63.99 ± 1.66
cn-motifs-perceptive-graph-neural-networks73.29±1.29
cat-a-causally-graph-attention-network-for69.9±1.0
large-scale-learning-on-non-homophilous68.42 ± 1.38
understanding-over-squashing-and-bottlenecks-142.73±0.15
refining-latent-homophilic-structures-over72.31±1.6
non-local-graph-neural-networks70.1 ± 2.9
restructuring-graph-for-higher-homophily-via68.4 ± 2.3
improving-graph-neural-networks-with-simple78.14±1.25
sheaf-neural-networks-with-connection65.21±2.04
enhancing-intra-class-information-extraction72.13±2.11
sign-is-not-a-remedy-multiset-to-multiset75.20 ± 2.3
geom-gcn-geometric-graph-convolutional-160.9
beyond-homophily-with-graph-echo-state-176.2±1.2
geom-gcn-geometric-graph-convolutional-159.96
mixhop-higher-order-graph-convolution60.50 ± 2.53
beyond-low-frequency-information-in-graph46.07 ± 2.11
finding-global-homophily-in-graph-neural69.78±2.42
neural-sheaf-diffusion-a-topological68.04 ± 1.58
breaking-the-limit-of-graph-neural-networks65.24 ± 0.87
revisiting-heterophily-for-graph-neural74.56 ± 2.08
higher-order-graph-convolutional-network-with68.47±0.45
revisiting-heterophily-for-graph-neural74.47 ± 1.84
fdgatii-fast-dynamic-graph-attention-with65.1754
the-heterophilic-snowflake-hypothesis70.18
graphrare-reinforcement-learning-enhanced69.28±1.90
two-sides-of-the-same-coin-heterophily-and71.14 ± 1.84
universal-deep-gnns-rethinking-residual74.53±1.19
geom-gcn-geometric-graph-convolutional-160.31
signgt-signed-attention-based-graph74.31±1.24
make-heterophily-graphs-better-fit-gnn-a74.57±2.56
heterophilic-graph-neural-networks59.14±2.42
improving-graph-neural-networks-by-learning79.69±1.35
transfer-entropy-in-graph-convolutional71.14 ± 1.84
revisiting-heterophily-for-graph-neural74.76 ± 2.2
improving-graph-neural-networks-with-simple78.27±1.28
learn-from-heterophily-heterophilous68.86 ± 1.45
simple-truncated-svd-based-model-for-node77.48±0.80
label-wise-message-passing-graph-neural74.4±1.4
holonets-spectral-convolutions-do-extend-to80.33±1.19
revisiting-heterophily-for-graph-neural59.21 ± 2.22
finding-global-homophily-in-graph-neural71.21±1.84
ordered-gnn-ordering-message-passing-to-deal72.28±2.29
diffusion-jump-gnns-homophiliation-via80.48±1.46
revisiting-heterophily-for-graph-neural74.41 ± 1.49
neural-sheaf-diffusion-a-topological67.93 ± 1.58
non-local-graph-neural-networks65.7 ± 1.4
neural-sheaf-diffusion-a-topological68.68 ± 1.73
revisiting-heterophily-for-graph-neural68.46 ± 1.7
transitivity-preserving-graph-representation69.78 ±3.21
joint-adaptive-feature-smoothing-and-topology62.59 ± 2.04
breaking-the-entanglement-of-homophily-and46.2±1.3
graph-neural-reaction-diffusion-models74.79 ± 2.14