Multi Person Pose Estimation On Mpii Multi
المقاييس
AP
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
| Paper Title | ||
|---|---|---|
| AlphaPose | 82.1% | RMPE: Regional Multi-person Pose Estimation |
| Generative Partition Networks | 80.4% | Generative Partition Networks for Multi-Person Pose Estimation |
| SPM | 78.5% | Single-Stage Multi-Person Pose Machines |
| Refine | 78% | Learning to Refine Human Pose Estimation |
| Associative Embedding | 77.5% | Associative Embedding: End-to-End Learning for Joint Detection and Grouping |
| Part Affinity Fields | 75.6% | Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields |
| Articulated Tracking | 74.3% | ArtTrack: Articulated Multi-person Tracking in the Wild |
| Local Joint-to-Person Association | 62.2% | Multi-Person Pose Estimation with Local Joint-to-Person Associations |
| DeeperCut | 59.4% | DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model |
0 of 9 row(s) selected.