HyperAI

Language Modelling On Penn Treebank Character

المقاييس

Bit per Character (BPC)
Number of params

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجBit per Character (BPC)Number of params
seq-u-net-a-one-dimensional-causal-u-net-for1.315.9M
improved-language-modeling-by-decoding-the1.16913.8M
hypernetworks1.21914.4M
accessing-higher-level-representations-in1.16010.7M
mogrifier-lstm1.08324M
recurrent-highway-networks-with-grouped1.14716.0M
mogrifier-lstm1.12024M
seq-u-net-a-one-dimensional-causal-u-net-for1.35.9M
trellis-networks-for-sequence-modeling1.15813.4M
r-transformer-recurrent-neural-network1.24-
an-analysis-of-neural-language-modeling-at1.18713.8M
independently-recurrent-neural-network-indrnn1.19-
deep-independently-recurrent-neural-network1.18-
an-empirical-evaluation-of-generic1.31-
neural-architecture-search-with-reinforcement1.21416.3M
fast-slow-recurrent-neural-networks1.19027M
discrete-flows-invertible-generative-models1.38-
gating-revisited-deep-multi-layer-rnns-that-11.30-
an-analysis-of-neural-language-modeling-at1.17513.8M
fast-slow-recurrent-neural-networks1.19327M