HyperAI

Face Verification On Ijb A

المقاييس

TAR @ FAR=0.01

النتائج

نتائج أداء النماذج المختلفة على هذا المعيار القياسي

جدول المقارنة
اسم النموذجTAR @ FAR=0.01
face-search-at-scale-80-million-gallery73.30%
an-all-in-one-convolutional-neural-network92.20%
faceposenet-making-a-case-for-landmark-free90.1%
triplet-probabilistic-embedding-for-face90%
template-adaptation-for-face-verification-and93.90%
l2-constrained-softmax-loss-for97%
dual-agent-gans-for-photorealistic-and97.60%
inclusive-normalization-of-face-images-to94.60%
probabilistic-face-embeddings97.5%
semi-supervised-adversarial-learning-to53.507%
ghostvlad-for-set-based-face-recognition97.2%
vggface2-a-dataset-for-recognising-faces96.8%
do-we-really-need-to-collect-millions-of88.60%
unconstrained-face-verification-using-deep83.80%
face-recognition-using-deep-multi-pose78.70%
pose-robust-face-recognition-via-deep94.40%
neural-aggregation-network-for-video-face94.10%