Data To Text Generation On Rotowire Relation
المقاييس
Precision
count
النتائج
نتائج أداء النماذج المختلفة على هذا المعيار القياسي
اسم النموذج | Precision | count | Paper Title | Repository |
---|---|---|---|---|
SeqPlan | 97.6 | 46.7 | Data-to-text Generation with Variational Sequential Planning | |
Force-Copy | 95.40% | 27.37 | May the Force Be with Your Copy Mechanism: Enhanced Supervised-Copy Method for Natural Language Generation | - |
Macro | 97.6 | 42.1 | Data-to-text Generation with Macro Planning | |
Neural Content Planning + conditional copy | 87.47% | 34.28 | Data-to-Text Generation with Content Selection and Planning | |
Encoder-decoder + conditional copy | 74.80% | 23.72 | Challenges in Data-to-Document Generation | |
Hierarchical Transformer Encoder + conditional copy | 89.46% | 21.17 | A Hierarchical Model for Data-to-Text Generation |
0 of 6 row(s) selected.