HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
세마틱 세그멘테이션
Semantic Segmentation On Scannetv2
Semantic Segmentation On Scannetv2
평가 지표
Mean IoU
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Mean IoU
Paper Title
CMX
61.3%
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
EMSANet (2x ResNet-34 NBt1D, PanopticNDT version)
60.0%
PanopticNDT: Efficient and Robust Panoptic Mapping
RFBNet
59.2%
RFBNet: Deep Multimodal Networks with Residual Fusion Blocks for RGB-D Semantic Segmentation
SSMA
57.7
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
EMSAFormer
56.4%
Efficient Multi-Task Scene Analysis with RGB-D Transformers
AdapNet++
50.3
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
3DMV (2d proj)
49.8%
3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation
MSeg1080_RVC
48.5%
MSeg: A Composite Dataset for Multi-domain Semantic Segmentation
PSPNet
47.5%
Pyramid Scene Parsing Network
ENet
37.6%
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
ScanNet (2d proj)
33.0%
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
Floors are Flat
-
Floors are Flat: Leveraging Semantics for Real-Time Surface Normal Prediction
0 of 12 row(s) selected.
Previous
Next
Semantic Segmentation On Scannetv2 | SOTA | HyperAI초신경