HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
ビデオ品質評価
Video Quality Assessment On Msu Video Quality
Video Quality Assessment On Msu Video Quality
評価指標
KLCC
PLCC
SRCC
Type
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
KLCC
PLCC
SRCC
Type
Paper Title
Repository
LI
0.7640
0.9270
0.9131
NR
Blindly Assess Quality of In-the-Wild Videos via Quality-aware Pre-training and Motion Perception
-
DOVER
0.7216
0.9099
0.8871
NR
Exploring Video Quality Assessment on User Generated Contents from Aesthetic and Technical Perspectives
-
NIMA
0.6745
0.8784
0.8494
NR
NIMA: Neural Image Assessment
-
SPAQ MT-S
0.7186
0.8814
0.8822
NR
Perceptual Quality Assessment of Smartphone Photography
VIDEVAL
0.5414
0.7717
0.7286
NR
UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content
-
FASTER-VQA
0.5645
0.8087
0.7508
NR
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
-
FAST-VQA
0.6498
0.8613
0.8308
NR
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
-
Y-NIQE
0.4215
0.6713
0.5985
NR
Barriers towards no-reference metrics application to compressed video quality analysis: on the example of no-reference metric NIQE
-
MDTVSFA
0.7883
0.9431
0.9289
NR
Unified Quality Assessment of In-the-Wild Videos with Mixed Datasets Training
-
GVSP-UGCVQA-NR (multi_scale)
0.6942
0.8851
0.8673
NR
Deep Learning based Full-reference and No-reference Quality Assessment Models for Compressed UGC Videos
-
PaQ-2-PiQ
0.7079
0.8549
0.8705
NR
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
-
VSFA
0.7483
0.9180
0.9049
NR
Quality Assessment of In-the-Wild Videos
-
MEON
0.3775
0.2898
0.5066
NR
-
-
KonCept512
0.6608
0.8464
0.8360
NR
KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment
-
MUSIQ
0.7433
0.9068
0.9004
NR
MUSIQ: Multi-scale Image Quality Transformer
-
SPAQ MT-A
0.7148
0.8824
0.8794
NR
Perceptual Quality Assessment of Smartphone Photography
UNIQUE
0.7648
0.9238
0.9148
NR
UNIQUE: Unsupervised Image Quality Estimation
-
DBCNN
0.7750
0.9222
0.9220
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
-
LINEARITY
0.7589
0.9106
0.9104
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
-
GVSP-UGCVQA-NR (single_scale)
0.7037
0.8933
0.8742
NR
Deep Learning based Full-reference and No-reference Quality Assessment Models for Compressed UGC Videos
-
0 of 21 row(s) selected.
Previous
Next
Video Quality Assessment On Msu Video Quality | SOTA | HyperAI超神経