HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
ポイントクラウドレジストレーション
Point Cloud Registration On Kitti Trained On
Point Cloud Registration On Kitti Trained On
評価指標
Success Rate
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Success Rate
Paper Title
GeDi
98.92
Learning general and distinctive 3D local deep descriptors for point cloud registration
FCGF+SC2-PCR
97.66
SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
FCGF+PointDSC
96.76
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
Exhaustive Grid Search
94.95
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
FPFH+PointDSC
94.05
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
DIP
93.51
Distinctive 3D local deep descriptors
Greedy Grid Search
90.27
Challenging the Universal Representation of Deep Models for 3D Point Cloud Registration
YOHO-C
82.16
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
YOHO-O
81.44
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
SpinNet
81.44
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
GeoTransformer
67.93
GeoTransformer: Fast and Robust Point Cloud Registration with Geometric Transformer
Predator
41.20
PREDATOR: Registration of 3D Point Clouds with Low Overlap
D3Feat-pred
36.76
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
FCGF
24.19
Fully Convolutional Geometric Features
0 of 14 row(s) selected.
Previous
Next
Point Cloud Registration On Kitti Trained On | SOTA | HyperAI超神経