HyperAI
HyperAI超神経
ホーム
ニュース
最新論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
ホーム
SOTA
ノード分類
Node Classification On Cornell 60 20 20
Node Classification On Cornell 60 20 20
評価指標
1:1 Accuracy
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
1:1 Accuracy
Paper Title
Repository
HH-GAT
72.7 ± 4.26
Half-Hop: A graph upsampling approach for slowing down message passing
-
ACM-SGC-2
93.77 ± 2.17
Revisiting Heterophily For Graph Neural Networks
-
GAT
76.00 ± 1.01
Graph Attention Networks
-
GraphSAGE
71.41 ± 1.24
Inductive Representation Learning on Large Graphs
-
Snowball-3
82.95 ± 2.1
Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks
-
ACM-GCN
94.75 ± 3.8
Revisiting Heterophily For Graph Neural Networks
-
GCN
82.46 ± 3.11
Semi-Supervised Classification with Graph Convolutional Networks
-
HH-GraphSAGE
74.6 ± 6.06
Half-Hop: A graph upsampling approach for slowing down message passing
-
GCNII*
90.49 ± 4.45
Simple and Deep Graph Convolutional Networks
-
ACM-GCN++
93.93 ± 1.05
Revisiting Heterophily For Graph Neural Networks
-
ACMII-GCN
95.9 ± 1.83
Revisiting Heterophily For Graph Neural Networks
-
ACM-GCN+
94.92 ± 2.79
Revisiting Heterophily For Graph Neural Networks
-
ACM-Snowball-2
95.08 ± 3.11
Revisiting Heterophily For Graph Neural Networks
-
ACM-GCNII*
93.44 ± 2.74
Revisiting Heterophily For Graph Neural Networks
-
MLP-2
91.30 ± 0.70
Revisiting Heterophily For Graph Neural Networks
-
SGC-1
70.98 ± 8.39
Simplifying Graph Convolutional Networks
-
FAGCN
88.03 ± 5.6
Beyond Low-frequency Information in Graph Convolutional Networks
-
SGC-2
72.62 ± 9.92
Simplifying Graph Convolutional Networks
-
H2GCN
86.23 ± 4.71
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
-
Geom-GCN*
60.81
Geom-GCN: Geometric Graph Convolutional Networks
-
0 of 36 row(s) selected.
Previous
Next
Node Classification On Cornell 60 20 20 | SOTA | HyperAI超神経