HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
利用規約
プライバシーポリシー
日本語
HyperAI
HyperAI超神経
Toggle Sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
プラットフォーム
ホーム
SOTA
ノイジーラベル学習
Learning With Noisy Labels On Cifar 10N 1
Learning With Noisy Labels On Cifar 10N 1
評価指標
Accuracy (mean)
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
Accuracy (mean)
Paper Title
ProMix
96.97
ProMix: Combating Label Noise via Maximizing Clean Sample Utility
PSSCL
96.17
PSSCL: A progressive sample selection framework with contrastive loss designed for noisy labels
PGDF
96.01
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
SOP+
95.28
Robust Training under Label Noise by Over-parameterization
ILL
94.85
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
CORES*
94.45
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
ELR+
94.43
Early-Learning Regularization Prevents Memorization of Noisy Labels
GNL
91.97
Partial Label Supervision for Agnostic Generative Noisy Label Learning
ELR
91.46
Early-Learning Regularization Prevents Memorization of Noisy Labels
CAL
90.93
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Co-Teaching
90.33
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
JoCoR
90.30
Combating noisy labels by agreement: A joint training method with co-regularization
Negative-LS
90.29
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Divide-Mix
90.18
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Positive-LS
89.80
Does label smoothing mitigate label noise?
F-div
89.70
When Optimizing $f$-divergence is Robust with Label Noise
Co-Teaching+
89.70
How does Disagreement Help Generalization against Label Corruption?
CORES
89.66
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Peer Loss
89.06
Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
T-Revision
88.33
Are Anchor Points Really Indispensable in Label-Noise Learning?
0 of 24 row(s) selected.
Previous
Next
Learning With Noisy Labels On Cifar 10N 1 | SOTA | HyperAI超神経