HyperAI
HyperAI超神経
ホーム
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
サイトを検索…
⌘
K
ホーム
SOTA
画像超解像度
Image Super Resolution On Div2K Val 4X
Image Super Resolution On Div2K Val 4X
評価指標
LPIPS
PSNR
SSIM
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
LPIPS
PSNR
SSIM
Paper Title
Repository
LINF
0.112
27.33
0.76
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution
-
EDSR
-
29.25
0.9017
Enhanced Deep Residual Networks for Single Image Super-Resolution
-
RankSRGAN
-
26.55
0.75
Implicit Diffusion Models for Continuous Super-Resolution
-
GOUB
0.220
26.89
0.7478
Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge
-
FxSR-PD t=0.8
0.1028
27.51
0.789
Flexible Style Image Super-Resolution using Conditional Objective
-
LAR-SR
-
27.03
0.77
Implicit Diffusion Models for Continuous Super-Resolution
-
Bicubic
-
26.7
0.77
Implicit Diffusion Models for Continuous Super-Resolution
-
LINF t=0.0
0.248
29.14
0.83
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution
-
HCFlow
-
27.02
0.76
Implicit Diffusion Models for Continuous Super-Resolution
-
LIIF
-
29
0.89
Learning Continuous Image Representation with Local Implicit Image Function
-
HCFlow++
-
26.61
0.74
Implicit Diffusion Models for Continuous Super-Resolution
-
SRFlow-LP
0.109
27.51
0.78
Boosting Flow-based Generative Super-Resolution Models via Learned Prior
ESRGAN
-
26.22
0.75
Implicit Diffusion Models for Continuous Super-Resolution
-
PixelRL-SR
-
28.08
0.8140
Multi-Step Reinforcement Learning for Single Image Super-Resolution
LINF-LP
0.105
28.00
0.78
Boosting Flow-based Generative Super-Resolution Models via Learned Prior
AESOP
0.0893
29.137
0.8023
Auto-Encoded Supervision for Perceptual Image Super-Resolution
-
RCOT
0.104
28.41
0.804
Residual-Conditioned Optimal Transport: Towards Structure-Preserving Unpaired and Paired Image Restoration
-
SRFlow
0.12
27.09
0.76
SRFlow: Learning the Super-Resolution Space with Normalizing Flow
-
IDM
-
27.59
0.78
Implicit Diffusion Models for Continuous Super-Resolution
-
FxSR-PD t=0.0
0.239
29.24
0.8383
Flexible Style Image Super-Resolution using Conditional Objective
-
0 of 21 row(s) selected.
Previous
Next