HyperAI超神経

Image Clustering On Cifar 100

評価指標

ARI
Accuracy
NMI
Train Set

評価結果

このベンチマークにおける各モデルのパフォーマンス結果

比較表
モデル名ARIAccuracyNMITrain Set
twin-contrastive-learning-for-online0.3570.5310.529Train
モデル 20.3770.555-Train
multi-modal-deep-clustering-unsupervised-0.4460.418-
improving-unsupervised-image-clustering-with---Train
information-maximization-clustering-via-multi0.3370.490.503-
improving-image-clustering-with-artifacts0.50530.65020.771Test
deep-clustering-for-unsupervised-learning-of-0.189-Train+Test
spice-semantic-pseudo-labeling-for-image0.4220.5840.583Train
deep-probability-aggregation-clustering0.3930.5550.542-
exploring-the-limits-of-deep-image-clustering0.5330.6710.769Train
joint-unsupervised-learning-of-deep-0.1370.103Train+Test
representation-learning-for-clustering-via0.3030.4790.468Train
exploring-the-limits-of-deep-image-clustering0.6120.7370.799Train
exploring-a-principled-framework-for-deep-0.7730.824-
let-go-of-your-labels-with-unsupervised-10.8340.8980.915-
unsupervised-deep-embedding-for-clustering-0.1850.136Train+Test
contrastive-clustering0.2660.4290.431-
clustering-friendly-representation-learning-10.2640.4250.426Train
deep-comprehensive-correlation-mining-for-0.3270.285Train+Test
contrastive-hierarchical-clustering0.2990.4370.467-
unsupervised-representation-learning-with-1-0.1510.120Train+Test
information-maximization-clustering-via-multi0.3610.5190.527Train
deep-clustering-via-probabilistic-ratio-cut-0.7890.856-
auto-encoding-variational-bayes-0.1520.108Train+Test
c3-cross-instance-guided-contrastive0.2750.4510.434-
mitigating-embedding-and-class-assignment-0.353--
the-balanced-pairwise-affinities-feature0.4020.5500.560-
deep-adaptive-image-clustering-0.2380.185Train+Test
learning-to-classify-images-without-labels0.3330.5070.486Train
learning-to-classify-images-without-labels0.3010.4590.468Train