HyperAI
HyperAI超神経
ホーム
プラットフォーム
ドキュメント
ニュース
論文
チュートリアル
データセット
百科事典
SOTA
LLMモデル
GPU ランキング
学会
検索
サイトについて
日本語
HyperAI
HyperAI超神経
Toggle sidebar
サイトを検索…
⌘
K
Command Palette
Search for a command to run...
ホーム
SOTA
異常検出
Anomaly Detection On Unlabeled Cifar 10 Vs
Anomaly Detection On Unlabeled Cifar 10 Vs
評価指標
AUROC
評価結果
このベンチマークにおける各モデルのパフォーマンス結果
Columns
モデル名
AUROC
Paper Title
Repository
PsudoLabels ViT
96.7
Out-of-Distribution Detection Without Class Labels
-
PsudoLabels ResNet-152
93.3
Out-of-Distribution Detection Without Class Labels
-
PsudoLabels ResNet-18
90.8
Out-of-Distribution Detection Without Class Labels
-
SCAN Features
90.2
Out-of-Distribution Detection Without Class Labels
-
MeanShifted
90.0
Mean-Shifted Contrastive Loss for Anomaly Detection
SSD
89.6
SSD: A Unified Framework for Self-Supervised Outlier Detection
CSI
89.3
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
GOAD
89.2
Classification-Based Anomaly Detection for General Data
MTL
82.92
Shifting Transformation Learning for Out-of-Distribution Detection
-
Input Complexity (Glow)
73.6
Input complexity and out-of-distribution detection with likelihood-based generative models
Likelihood (Glow)
58.2
Input complexity and out-of-distribution detection with likelihood-based generative models
Input Complexity (PixelCNN++)
53.5
Input complexity and out-of-distribution detection with likelihood-based generative models
Likelihood (PixelCNN++)
52.6
Input complexity and out-of-distribution detection with likelihood-based generative models
0 of 13 row(s) selected.
Previous
Next